vashu2425's picture
Upload 6 files
7e960ca verified
"""
EDA Analysis Module
This module handles all dataset processing and analysis, providing structured information
about the dataset that can be used for visualization and LLM prompting.
"""
import pandas as pd
import numpy as np
from typing import Dict, List, Tuple, Any, Optional
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from io import BytesIO
import base64
class DatasetAnalyzer:
"""Class for analyzing datasets and extracting key information"""
def __init__(self, df: pd.DataFrame = None):
"""Initialize with an optional dataframe"""
self.df = df
self.analysis_results = {}
def load_dataframe(self, df: pd.DataFrame) -> None:
"""Load a dataframe for analysis"""
self.df = df
# Reset analysis results when loading a new dataframe
self.analysis_results = {}
def analyze_dataset(self) -> Dict[str, Any]:
"""
Perform comprehensive analysis on the dataset
Returns:
Dict: Dictionary containing all analysis results
"""
if self.df is None:
raise ValueError("No dataframe loaded. Please load a dataframe first.")
# Basic information
self.analysis_results["shape"] = self.df.shape
self.analysis_results["columns"] = list(self.df.columns)
self.analysis_results["dtypes"] = {col: str(self.df[col].dtype) for col in self.df.columns}
# Missing values
self.analysis_results["missing_values"] = self._analyze_missing_values()
# Basic statistics
self.analysis_results["basic_stats"] = self._generate_basic_stats()
# Correlations (for numerical columns)
self.analysis_results["correlations"] = self._analyze_correlations()
# Sample data
self.analysis_results["sample_data"] = self.df.head().to_string()
# Additional analyses
self.analysis_results["categorical_columns"] = self._identify_categorical_columns()
self.analysis_results["numerical_columns"] = self._identify_numerical_columns()
self.analysis_results["unique_values"] = self._count_unique_values()
return self.analysis_results
def _analyze_missing_values(self) -> Dict[str, Tuple[int, float]]:
"""
Analyze missing values in the dataset
Returns:
Dict: Column names as keys, tuples of (count, percentage) as values
"""
missing_values = {}
for col in self.df.columns:
count = self.df[col].isna().sum()
percentage = round((count / len(self.df)) * 100, 2)
missing_values[col] = (count, percentage)
return missing_values
def _generate_basic_stats(self) -> str:
"""
Generate basic statistics for the dataset
Returns:
str: String representation of basic statistics
"""
# For numerical columns
num_stats = self.df.describe().to_string()
# For categorical columns
cat_columns = self._identify_categorical_columns()
cat_stats = ""
if cat_columns:
cat_stats = "\n\nCategorical columns statistics:\n"
for col in cat_columns:
value_counts = self.df[col].value_counts().head(10)
cat_stats += f"\n{col} - Top values:\n{value_counts.to_string()}\n"
return num_stats + cat_stats
def _analyze_correlations(self) -> str:
"""
Analyze correlations between numerical features
Returns:
str: String representation of top correlations
"""
num_columns = self._identify_numerical_columns()
if not num_columns or len(num_columns) < 2:
return "Not enough numerical columns for correlation analysis."
corr_matrix = self.df[num_columns].corr()
# Get top correlations (excluding self-correlations)
corr_pairs = []
for i in range(len(num_columns)):
for j in range(i+1, len(num_columns)):
col1, col2 = num_columns[i], num_columns[j]
corr_value = corr_matrix.loc[col1, col2]
if not np.isnan(corr_value):
corr_pairs.append((col1, col2, corr_value))
# Sort by absolute correlation value
corr_pairs.sort(key=lambda x: abs(x[2]), reverse=True)
# Format results
result = "Top correlations:\n"
for col1, col2, corr in corr_pairs[:10]: # Top 10 correlations
result += f"{col1} -- {col2}: {corr:.4f}\n"
return result
def _identify_categorical_columns(self) -> List[str]:
"""
Identify categorical columns in the dataset
Returns:
List[str]: List of categorical column names
"""
cat_columns = []
for col in self.df.columns:
# Consider object, category, and boolean types as categorical
if self.df[col].dtype == 'object' or self.df[col].dtype == 'category' or self.df[col].dtype == 'bool':
cat_columns.append(col)
# Also consider int/float columns with few unique values as categorical
elif (self.df[col].dtype == 'int64' or self.df[col].dtype == 'float64') and \
self.df[col].nunique() < 10 and self.df[col].nunique() / len(self.df) < 0.05:
cat_columns.append(col)
return cat_columns
def _identify_numerical_columns(self) -> List[str]:
"""
Identify numerical columns in the dataset
Returns:
List[str]: List of numerical column names
"""
num_columns = []
cat_columns = self._identify_categorical_columns()
for col in self.df.columns:
if col not in cat_columns and pd.api.types.is_numeric_dtype(self.df[col].dtype):
num_columns.append(col)
return num_columns
def _count_unique_values(self) -> Dict[str, int]:
"""
Count unique values for each column
Returns:
Dict: Column names as keys, unique count as values
"""
return {col: self.df[col].nunique() for col in self.df.columns}
def generate_eda_visualizations(self) -> Dict[str, str]:
"""
Generate common EDA visualizations
Returns:
Dict: Dictionary of visualization titles and their base64-encoded images
"""
if self.df is None:
raise ValueError("No dataframe loaded. Please load a dataframe first.")
visualizations = {}
# 1. Missing values heatmap
visualizations["missing_values_heatmap"] = self._plot_missing_values()
# 2. Distribution plots for numerical features
num_columns = self._identify_numerical_columns()
for i, col in enumerate(num_columns[:5]): # Limit to first 5 numerical columns
visualizations[f"distribution_{col}"] = self._plot_distribution(col)
# 3. Correlation heatmap
visualizations["correlation_heatmap"] = self._plot_correlation_heatmap()
# 4. Categorical feature distributions
cat_columns = self._identify_categorical_columns()
for i, col in enumerate(cat_columns[:5]): # Limit to first 5 categorical columns
visualizations[f"categorical_{col}"] = self._plot_categorical_distribution(col)
# 5. Scatter plot of 2 most correlated features
if len(num_columns) >= 2:
visualizations["scatter_plot"] = self._plot_scatter_correlation()
return visualizations
def _plot_missing_values(self) -> str:
"""Generate missing values heatmap"""
plt.figure(figsize=(10, 6))
sns.heatmap(self.df.isnull(), cmap='viridis', yticklabels=False, cbar=True, cbar_kws={'label': 'Missing Data'})
plt.tight_layout()
plt.title('Missing Values Heatmap')
# Convert plot to base64 string
return self._fig_to_base64(plt.gcf())
def _plot_distribution(self, column: str) -> str:
"""Generate distribution plot for a numerical column"""
plt.figure(figsize=(10, 6))
# Histogram with KDE
sns.histplot(data=self.df, x=column, kde=True)
plt.title(f'Distribution of {column}')
plt.xlabel(column)
plt.ylabel('Frequency')
plt.tight_layout()
# Convert plot to base64 string
return self._fig_to_base64(plt.gcf())
def _plot_correlation_heatmap(self) -> str:
"""Generate correlation heatmap"""
num_columns = self._identify_numerical_columns()
if not num_columns or len(num_columns) < 2:
return ""
plt.figure(figsize=(12, 10))
corr_matrix = self.df[num_columns].corr()
mask = np.triu(np.ones_like(corr_matrix, dtype=bool))
# Custom diverging palette
cmap = sns.diverging_palette(230, 20, as_cmap=True)
# Draw heatmap
sns.heatmap(corr_matrix, mask=mask, cmap=cmap, vmax=1, vmin=-1, center=0,
square=True, linewidths=.5, annot=True, fmt=".2f")
plt.title('Correlation Heatmap')
plt.tight_layout()
# Convert plot to base64 string
return self._fig_to_base64(plt.gcf())
def _plot_categorical_distribution(self, column: str) -> str:
"""Generate bar plot for categorical column"""
plt.figure(figsize=(10, 6))
# Get value counts and limit to top 10 categories if there are too many
value_counts = self.df[column].value_counts()
if len(value_counts) > 10:
# Keep top 9 categories and group the rest as 'Other'
top_categories = value_counts.nlargest(9).index
data = self.df.copy()
data[column] = data[column].apply(lambda x: x if x in top_categories else 'Other')
sns.countplot(y=column, data=data, order=data[column].value_counts().index)
else:
sns.countplot(y=column, data=self.df, order=value_counts.index)
plt.title(f'Distribution of {column}')
plt.xlabel('Count')
plt.ylabel(column)
plt.tight_layout()
# Convert plot to base64 string
return self._fig_to_base64(plt.gcf())
def _plot_scatter_correlation(self) -> str:
"""Generate scatter plot of two most correlated features"""
num_columns = self._identify_numerical_columns()
if not num_columns or len(num_columns) < 2:
return ""
# Find the two most correlated features
corr_matrix = self.df[num_columns].corr().abs()
# Get upper triangle mask
mask = np.triu(np.ones_like(corr_matrix, dtype=bool))
corr_matrix = corr_matrix.mask(mask)
# Find the max correlation
max_corr = corr_matrix.max().max()
max_corr_idx = corr_matrix.stack().idxmax()
if pd.isna(max_corr):
return ""
# Get the column names
col1, col2 = max_corr_idx
# Create scatter plot
plt.figure(figsize=(10, 6))
# Add regression line
sns.regplot(x=col1, y=col2, data=self.df, scatter_kws={'alpha': 0.5})
plt.title(f'Scatter plot of {col1} vs {col2} (correlation: {corr_matrix.loc[col1, col2]:.2f})')
plt.tight_layout()
# Convert plot to base64 string
return self._fig_to_base64(plt.gcf())
def _fig_to_base64(self, fig) -> str:
"""Convert matplotlib figure to base64 string"""
buf = BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode('utf-8')
plt.close(fig)
return img_str
def suggest_data_preprocessing(self) -> Dict[str, List[str]]:
"""
Suggest preprocessing steps based on dataset analysis
Returns:
Dict: Dictionary of preprocessing suggestions for each column type
"""
if not self.analysis_results:
self.analyze_dataset()
suggestions = {
"numerical": [],
"categorical": [],
"missing_values": [],
"outliers": [],
"general": []
}
# Missing values suggestions
missing_cols = [col for col, (count, _) in self.analysis_results["missing_values"].items() if count > 0]
if missing_cols:
suggestions["missing_values"].append(f"Found {len(missing_cols)} columns with missing values.")
if len(missing_cols) > 5:
suggestions["missing_values"].append(f"Columns with highest missing values: {', '.join(missing_cols[:5])}...")
else:
suggestions["missing_values"].append(f"Columns with missing values: {', '.join(missing_cols)}")
suggestions["missing_values"].append("Consider these strategies for handling missing values:")
suggestions["missing_values"].append("- Imputation (mean/median for numerical, mode for categorical)")
suggestions["missing_values"].append("- Creating missing value indicators as new features")
suggestions["missing_values"].append("- Removing rows or columns with too many missing values")
# Numerical column suggestions
num_cols = self.analysis_results["numerical_columns"]
if num_cols:
suggestions["numerical"].append(f"Found {len(num_cols)} numerical columns.")
suggestions["numerical"].append("Consider these preprocessing steps:")
suggestions["numerical"].append("- Scaling (StandardScaler or MinMaxScaler)")
suggestions["numerical"].append("- Check for skewness and apply log or Box-Cox transformation if needed")
suggestions["numerical"].append("- Create binned versions of continuous variables")
# Check for potential outliers
for col in num_cols:
if col in self.df.columns: # Safety check
q1 = self.df[col].quantile(0.25)
q3 = self.df[col].quantile(0.75)
iqr = q3 - q1
outlier_count = ((self.df[col] < (q1 - 1.5 * iqr)) | (self.df[col] > (q3 + 1.5 * iqr))).sum()
if outlier_count > 0:
percentage = round((outlier_count / len(self.df)) * 100, 2)
if percentage > 5: # If more than 5% are outliers
suggestions["outliers"].append(f"Column '{col}' has {outlier_count} potential outliers ({percentage}%).")
# Categorical column suggestions
cat_cols = self.analysis_results["categorical_columns"]
if cat_cols:
suggestions["categorical"].append(f"Found {len(cat_cols)} categorical columns.")
# Check cardinality (number of unique values)
high_cardinality = []
for col in cat_cols:
unique_count = self.analysis_results["unique_values"].get(col, 0)
if unique_count > 10:
high_cardinality.append((col, unique_count))
if high_cardinality:
suggestions["categorical"].append("High cardinality columns (many unique values):")
for col, count in sorted(high_cardinality, key=lambda x: x[1], reverse=True)[:5]:
suggestions["categorical"].append(f"- {col}: {count} unique values")
suggestions["categorical"].append("For high cardinality columns, consider:")
suggestions["categorical"].append("- Grouping less frequent categories")
suggestions["categorical"].append("- Target encoding or embedding techniques")
suggestions["categorical"].append("General categorical encoding strategies:")
suggestions["categorical"].append("- One-hot encoding for low cardinality columns")
suggestions["categorical"].append("- Label encoding for ordinal variables")
# General suggestions
suggestions["general"].append("General preprocessing recommendations:")
suggestions["general"].append("- Check for duplicate rows and remove if necessary")
suggestions["general"].append("- Normalize text fields (lowercase, remove special characters)")
suggestions["general"].append("- Create feature interactions for highly correlated features")
return suggestions
def generate_feature_engineering_ideas(self) -> List[str]:
"""
Generate feature engineering ideas based on dataset analysis
Returns:
List[str]: List of feature engineering suggestions
"""
if not self.analysis_results:
self.analyze_dataset()
ideas = []
# Get column types
num_cols = self.analysis_results["numerical_columns"]
cat_cols = self.analysis_results["categorical_columns"]
# Aggregation features
if len(num_cols) >= 2:
ideas.append("### Numerical Feature Transformations:")
ideas.append("1. Create polynomial features for continuous variables")
ideas.append("2. Apply mathematical transformations (log, sqrt, square) to handle skewed distributions")
ideas.append("3. Create binned versions of continuous features to capture non-linear relationships")
# Check for date/time related column names
time_related_cols = [col for col in self.df.columns if any(x in col.lower() for x in ['date', 'time', 'year', 'month', 'day'])]
if time_related_cols:
ideas.append("\n### Time-Based Features:")
ideas.append(f"Detected potential date/time columns: {', '.join(time_related_cols)}")
ideas.append("1. Extract components like year, month, day, weekday, quarter")
ideas.append("2. Create cyclical features using sine/cosine transformations for periodic time components")
ideas.append("3. Calculate time since specific events or time differences between dates")
# Categorical interactions
if len(cat_cols) >= 2:
ideas.append("\n### Categorical Feature Engineering:")
ideas.append("1. Create interaction features by combining categorical variables")
ideas.append("2. Use target encoding for high cardinality categorical features")
ideas.append("3. Combine rare categories into an 'Other' category to reduce dimensionality")
# Mixed interactions
if num_cols and cat_cols:
ideas.append("\n### Feature Interactions:")
ideas.append("1. Create group-based statistics (mean, median, min, max) of numerical features grouped by categorical features")
ideas.append("2. Calculate the difference from group means for numerical features")
ideas.append("3. Create ratio or difference features between related numerical columns")
# Dimensionality reduction
if len(num_cols) > 10:
ideas.append("\n### Dimensionality Reduction:")
ideas.append("1. Apply PCA to reduce dimensionality and create principal components")
ideas.append("2. Use feature selection methods (information gain, chi-square, mutual information)")
ideas.append("3. Try UMAP or t-SNE for non-linear dimensionality reduction")
# Text features
text_cols = [col for col in self.df.columns if self.df[col].dtype == 'object' and
self.df[col].apply(lambda x: isinstance(x, str) and len(x.split()) > 3).mean() > 0.5]
if text_cols:
ideas.append("\n### Text Feature Engineering:")
ideas.append(f"Detected potential text columns: {', '.join(text_cols)}")
ideas.append("1. Create bag-of-words or TF-IDF representations")
ideas.append("2. Extract text length, word count, and other statistical features")
ideas.append("3. Consider pretrained word embeddings or sentence transformers")
return ideas