Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- .gitattributes +1 -0
- data/imdb.csv +3 -0
- data/rnn_preprocessing.py +81 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
data/imdb.csv filter=lfs diff=lfs merge=lfs -text
|
data/imdb.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfc447764f82be365fa9c2beef4e8df89d3919e3da95f5088004797d79695aa2
|
3 |
+
size 66212309
|
data/rnn_preprocessing.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import string
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from nltk.corpus import stopwords
|
7 |
+
import nltk
|
8 |
+
nltk.download('stopwords')
|
9 |
+
stop_words = set(stopwords.words('english'))
|
10 |
+
|
11 |
+
def data_preprocessing(text: str) -> str:
|
12 |
+
"""preprocessing string: lowercase, removing html-tags, punctuation,
|
13 |
+
stopwords, digits
|
14 |
+
|
15 |
+
Args:
|
16 |
+
text (str): input string for preprocessing
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
str: preprocessed string
|
20 |
+
"""
|
21 |
+
|
22 |
+
text = text.lower()
|
23 |
+
text = re.sub('<.*?>', '', text) # html tags
|
24 |
+
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
|
25 |
+
text = ' '.join([word for word in text.split() if word not in stop_words])
|
26 |
+
text = [word for word in text.split() if not word.isdigit()]
|
27 |
+
text = ' '.join(text)
|
28 |
+
return text
|
29 |
+
|
30 |
+
def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
|
31 |
+
return list(filter(lambda x: x[1] > n, sorted_words))
|
32 |
+
|
33 |
+
def padding(review_int: list, seq_len: int) -> np.array: # type: ignore
|
34 |
+
"""Make left-sided padding for input list of tokens
|
35 |
+
|
36 |
+
Args:
|
37 |
+
review_int (list): input list of tokens
|
38 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
39 |
+
|
40 |
+
Returns:
|
41 |
+
np.array: padded sequences
|
42 |
+
"""
|
43 |
+
features = np.zeros((len(review_int), seq_len), dtype = int)
|
44 |
+
for i, review in enumerate(review_int):
|
45 |
+
if len(review) <= seq_len:
|
46 |
+
zeros = list(np.zeros(seq_len - len(review)))
|
47 |
+
new = zeros + review
|
48 |
+
else:
|
49 |
+
new = review[: seq_len]
|
50 |
+
features[i, :] = np.array(new)
|
51 |
+
|
52 |
+
return features
|
53 |
+
|
54 |
+
def preprocess_single_string(
|
55 |
+
input_string: str,
|
56 |
+
seq_len: int,
|
57 |
+
vocab_to_int: dict,
|
58 |
+
) -> torch.tensor:
|
59 |
+
"""Function for all preprocessing steps on a single string
|
60 |
+
|
61 |
+
Args:
|
62 |
+
input_string (str): input single string for preprocessing
|
63 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
64 |
+
vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int.
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
list: preprocessed string
|
68 |
+
"""
|
69 |
+
|
70 |
+
preprocessed_string = data_preprocessing(input_string)
|
71 |
+
result_list = []
|
72 |
+
for word in preprocessed_string.split():
|
73 |
+
try:
|
74 |
+
result_list.append(vocab_to_int[word])
|
75 |
+
except KeyError as e:
|
76 |
+
print(f'{e}: not in dictionary!')
|
77 |
+
result_padded = padding([result_list], seq_len)[0]
|
78 |
+
|
79 |
+
return torch.tensor(result_padded)
|
80 |
+
|
81 |
+
|