Voice-guard / main_app.py
varunkul's picture
Create main_app.py
6ad4764 verified
import os, io, pathlib, urllib.request
import numpy as np
import streamlit as st
from PIL import Image
from matplotlib import cm
st.write("### ✅ Voice Guard Streamlit — env-only v4 (no st.secrets)")
# ---- import Detector from app/ or src/ ----
Detector, _last_err = None, None
for mod in ["app.inference_wav2vec", "app.inference",
"src.inference_wav2vec", "src.inference"]:
try:
Detector = __import__(mod, fromlist=["Detector"]).Detector
break
except Exception as e:
_last_err = e
if Detector is None:
st.error(f"Could not import Detector from app/ or src/. Last error: {_last_err}")
st.stop()
# ---- ENV config only ----
def cfg(name: str, default: str = "") -> str:
v = os.getenv(name)
return v if v not in (None, "") else default
def ensure_weights() -> str:
wp = cfg("MODEL_WEIGHTS_PATH", "app/models/weights/wav2vec2_classifier.pth")
url = cfg("MODEL_WEIGHTS_URL", "")
dest = pathlib.Path(wp)
if not dest.exists() and url:
dest.parent.mkdir(parents=True, exist_ok=True)
with st.spinner(f"Downloading model weights to {dest} …"):
urllib.request.urlretrieve(url, str(dest))
st.toast("Weights downloaded", icon="✅")
if not dest.exists() and not url:
st.warning(
f"Model weights not found at '{wp}'. "
"Upload the .pth there OR set MODEL_WEIGHTS_URL in Settings → Variables & secrets."
)
return str(dest)
@st.cache_resource(show_spinner=True)
def load_detector():
return Detector(weights_path=ensure_weights())
det = load_detector()
# ---- helpers ----
def cam_to_png_bytes(cam: np.ndarray) -> bytes:
cam = np.asarray(cam, dtype=np.float32)
cam = np.nan_to_num(cam, nan=0.0); cam = np.clip(cam, 0.0, 1.0)
rgb = (cm.magma(cam)[..., :3] * 255).astype(np.uint8)
buf = io.BytesIO(); Image.fromarray(rgb).save(buf, "PNG")
return buf.getvalue()
def analyze(wav_bytes: bytes, source_hint: str):
proba = det.predict_proba(wav_bytes, source_hint=source_hint)
exp = det.explain(wav_bytes, source_hint=source_hint)
return proba, exp
# ---- UI ----
st.set_page_config(page_title="Voice Guard", page_icon="🛡️", layout="wide")
st.title("🛡️ Voice Guard — Human vs AI Speech")
left, right = st.columns([1,2], gap="large")
with left:
st.subheader("Input")
tab_rec, tab_up = st.tabs(["🎙️ Microphone", "📁 Upload"])
wav_bytes, source_hint = None, None
with tab_rec:
st.caption("Record ~3–7 s. If mic fails, use Upload.")
try:
from audio_recorder_streamlit import audio_recorder
audio = audio_recorder(text="Record",
recording_color="#ff6a00",
neutral_color="#2b2b2b",
icon_size="2x")
if audio:
wav_bytes, source_hint = audio, "microphone"
st.audio(wav_bytes, format="audio/wav")
except Exception:
st.info("Recorder not available—use Upload tab.")
with tab_up:
f = st.file_uploader("Upload wav/mp3/m4a/aac", type=["wav","mp3","m4a","aac"])
if f:
wav_bytes, source_hint = f.read(), "upload"
st.audio(wav_bytes)
st.markdown("---")
run = st.button("🔍 Analyze", type="primary", use_container_width=True,
disabled=wav_bytes is None)
with right:
st.subheader("Results")
if run and wav_bytes:
try:
with st.spinner("Analyzing…"):
proba, exp = analyze(wav_bytes, source_hint or "auto")
ph = float(proba.get("human",0.0)); pa = float(proba.get("ai",0.0))
label = (proba.get("label","human") or "human").upper()
thr = float(proba.get("threshold",0.5))
rule = proba.get("decision","threshold")
thr_src = proba.get("threshold_source","—")
rscore = proba.get("replay_score", None)
c1,c2,c3 = st.columns(3)
with c1: st.metric("Human", f"{ph*100:.1f}%")
with c2: st.metric("AI", f"{pa*100:.1f}%")
with c3:
color = "#22c55e" if label=="HUMAN" else "#fb7185"
st.markdown(f"**Final Label:** <span style='color:{color}'>{label}</span>", unsafe_allow_html=True)
st.caption(f"thr({thr_src})={thr:.2f} • rule={rule} • replay={'—' if rscore is None else f'{float(rscore):.2f}'}")
st.markdown("##### Explanation Heatmap")
cam = np.asarray(exp.get("cam"), dtype=np.float32)
st.image(cam_to_png_bytes(cam), caption="Spectrogram importance", use_column_width=True)
with st.expander("Raw JSON (debug)"):
st.json({"proba": proba, "explain": {"cam_shape": list(cam.shape)}})
except Exception as e:
st.error(f"Analyze failed: {e}")
st.caption("Upload 3–7s clips for the most reliable experience across browsers.")