varun500's picture
Create app.py
d56a4e8 verified
import faiss
import numpy as np
from FlagEmbedding import FlagModel
from flask import Flask, request, jsonify
from datasets import load_dataset
import gradio as gr
import os
import time
from functools import lru_cache
# Initialize components
app = Flask(__name__)
model = None
index = None
corpus = None
def initialize_components():
global model, index, corpus
# Load model with safety checks
if model is None:
model = FlagModel(
"BAAI/bge-large-en-v1.5",
query_instruction_for_retrieval="Represent this sentence for searching relevant passages:",
use_fp16=True
)
# Load corpus from Hugging Face dataset
if corpus is None:
dataset = load_dataset("awinml/medrag_corpus_sampled", split='train')
corpus = [f"{row['id']}\t{row['contents']}" for row in dataset]
# Create FAISS index in memory
if index is None:
embeddings = model.encode([doc.split('\t', 1)[1] for doc in corpus])
dimension = embeddings.shape[1]
index = faiss.IndexFlatIP(dimension)
index.add(embeddings.astype('float32'))
@app.route("/retrieve", methods=["POST"])
def retrieve():
start_time = time.time()
# Validate request
data = request.json
if not data or "queries" not in data:
return jsonify({"error": "Missing 'queries' parameter"}), 400
# Initialize components if needed
initialize_components()
# Process queries
queries = data["queries"]
topk = data.get("topk", 3)
return_scores = data.get("return_scores", False)
# Batch processing
query_embeddings = model.encode_queries(queries)
scores, indices = index.search(query_embeddings.astype('float32'), topk)
# Format results
results = []
for i, query in enumerate(queries):
query_results = []
for j in range(topk):
doc_idx = indices[i][j]
doc = corpus[doc_idx]
doc_id, content = doc.split('\t', 1)
result = {
"document": {
"id": doc_id,
"contents": content
},
"score": float(scores[i][j])
}
query_results.append(result)
results.append(query_results)
return jsonify({
"result": results,
"time": f"{time.time() - start_time:.2f}s"
})
# Gradio UI for testing
def gradio_interface(query, topk):
response = requests.post(
"http://localhost:7860/retrieve",
json={"queries": [query], "topk": topk}
)
return response.json()["result"][0]
# Start server
if __name__ == "__main__":
# First-time initialization
initialize_components()
# Create Gradio interface
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="Medical Query", placeholder="Enter your medical question..."),
gr.Slider(1, 10, value=3, label="Top Results")
],
outputs=gr.JSON(label="Retrieval Results"),
title="Medical Retrieval System",
description="Search across medical literature using AI-powered semantic search"
)
# Run both Flask and Gradio
iface.launch(server_name="0.0.0.0", server_port=7860, share=True)