varun500's picture
Create app.py
e556fdd
raw
history blame
857 Bytes
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering
# Load Flan Alpaca Large model
model_name = "declare-lab/flan-alpaca-base"
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
def main():
# Set app title
st.title("Flan Alpaca Large Model")
# Create input for user's question
question = st.text_input("Enter your question here:")
# Create button to submit question
if st.button("Submit"):
# Generate answer using Flan Alpaca Large model
answer = qa_pipeline(question=question, context="")["answer"]
# Display answer in output box
st.write("Answer: ", answer)
if __name__ == "__main__":
main()