Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import streamlit as st
|
4 |
+
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-4-169m-pile")
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-4-169m-pile")
|
6 |
+
def main():
|
7 |
+
st.title("Dragon Text Generator")
|
8 |
+
st.write("Enter a prompt and generate dragon-inspired text!")
|
9 |
+
|
10 |
+
# Input prompt
|
11 |
+
prompt = st.text_area("Enter your prompt", value="", height=150)
|
12 |
+
|
13 |
+
if st.button("Generate Text"):
|
14 |
+
if prompt.strip() != "":
|
15 |
+
# Generate text based on the provided prompt
|
16 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
17 |
+
output = model.generate(inputs["input_ids"], max_new_tokens=20)
|
18 |
+
generated_text = tokenizer.decode(output[0].tolist())
|
19 |
+
st.markdown("## Generated Text")
|
20 |
+
st.write(generated_text)
|
21 |
+
else:
|
22 |
+
st.warning("Please enter a prompt.")
|
23 |
+
|
24 |
+
if __name__ == "__main__":
|
25 |
+
main()
|