Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -20,7 +20,7 @@ mtcnn = MTCNN(
|
|
20 |
select_largest=False,
|
21 |
post_process=False,
|
22 |
device=DEVICE
|
23 |
-
).
|
24 |
|
25 |
model = InceptionResnetV1(
|
26 |
pretrained="vggface2",
|
@@ -35,8 +35,38 @@ model.to(DEVICE)
|
|
35 |
model.eval()
|
36 |
|
37 |
# Model Inference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
def predict_video(input_video):
|
39 |
-
"""Predict whether the input video contains real or fake faces"""
|
40 |
cap = cv2.VideoCapture(input_video.name)
|
41 |
frames = []
|
42 |
confidences = []
|
@@ -45,44 +75,18 @@ def predict_video(input_video):
|
|
45 |
ret, frame = cap.read()
|
46 |
if not ret:
|
47 |
break
|
48 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
49 |
-
frame_pil = Image.fromarray(frame)
|
50 |
|
51 |
-
|
52 |
-
if face is None:
|
53 |
-
raise Exception('No face detected')
|
54 |
-
face = face.unsqueeze(0) # add the batch dimension
|
55 |
-
face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
target_layers = [model.block8.branch1[-1]]
|
60 |
-
use_cuda = True if torch.cuda.is_available() else False
|
61 |
-
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=use_cuda)
|
62 |
-
targets = [ClassifierOutputTarget(0)]
|
63 |
-
|
64 |
-
grayscale_cam = cam(input_tensor=face, targets=targets, eigen_smooth=True)
|
65 |
-
grayscale_cam = grayscale_cam[0, :]
|
66 |
-
visualization = show_cam_on_image(frame, grayscale_cam, use_rgb=True)
|
67 |
-
face_with_mask = cv2.addWeighted(frame, 1, visualization, 0.5, 0)
|
68 |
-
|
69 |
-
with torch.no_grad():
|
70 |
-
output = torch.sigmoid(model(face).squeeze(0))
|
71 |
-
prediction = "real" if output.item() < 0.5 else "fake"
|
72 |
-
|
73 |
-
real_prediction = 1 - output.item()
|
74 |
-
fake_prediction = output.item()
|
75 |
-
|
76 |
-
confidences.append({
|
77 |
-
'real': real_prediction,
|
78 |
-
'fake': fake_prediction
|
79 |
-
})
|
80 |
-
|
81 |
-
frames.append(face_with_mask)
|
82 |
|
83 |
cap.release()
|
84 |
|
85 |
-
|
|
|
|
|
|
|
86 |
|
87 |
|
88 |
# Gradio Interface
|
|
|
20 |
select_largest=False,
|
21 |
post_process=False,
|
22 |
device=DEVICE
|
23 |
+
).eval()
|
24 |
|
25 |
model = InceptionResnetV1(
|
26 |
pretrained="vggface2",
|
|
|
35 |
model.eval()
|
36 |
|
37 |
# Model Inference
|
38 |
+
def predict_frame(frame):
|
39 |
+
"""Predict whether the input frame contains real or fake faces"""
|
40 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
41 |
+
frame_pil = Image.fromarray(frame)
|
42 |
+
|
43 |
+
face = mtcnn(frame_pil)
|
44 |
+
if face is None:
|
45 |
+
raise Exception('No face detected')
|
46 |
+
face = face.unsqueeze(0) # add the batch dimension
|
47 |
+
face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)
|
48 |
+
|
49 |
+
face = face.to(DEVICE, dtype=torch.float32) / 255.0
|
50 |
+
|
51 |
+
target_layers = [model.block8.branch1[-1]]
|
52 |
+
use_cuda = True if torch.cuda.is_available() else False
|
53 |
+
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=use_cuda)
|
54 |
+
targets = [ClassifierOutputTarget(0)]
|
55 |
+
|
56 |
+
grayscale_cam = cam(input_tensor=face, targets=targets, eigen_smooth=True)
|
57 |
+
grayscale_cam = grayscale_cam[0, :]
|
58 |
+
visualization = show_cam_on_image(frame, grayscale_cam, use_rgb=True)
|
59 |
+
face_with_mask = cv2.addWeighted(frame, 1, visualization, 0.5, 0)
|
60 |
+
|
61 |
+
with torch.no_grad():
|
62 |
+
output = torch.sigmoid(model(face).squeeze(0))
|
63 |
+
prediction = "real" if output.item() < 0.5 else "fake"
|
64 |
+
|
65 |
+
return prediction, face_with_mask
|
66 |
+
|
67 |
+
|
68 |
+
# Function to process video
|
69 |
def predict_video(input_video):
|
|
|
70 |
cap = cv2.VideoCapture(input_video.name)
|
71 |
frames = []
|
72 |
confidences = []
|
|
|
75 |
ret, frame = cap.read()
|
76 |
if not ret:
|
77 |
break
|
|
|
|
|
78 |
|
79 |
+
prediction, frame_with_mask = predict_frame(frame)
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
frames.append(frame_with_mask)
|
82 |
+
confidences.append(prediction)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
cap.release()
|
85 |
|
86 |
+
# Determine the final prediction based on the maximum occurrence of predictions
|
87 |
+
final_prediction = max(set(confidences), key=confidences.count)
|
88 |
+
|
89 |
+
return final_prediction, frames
|
90 |
|
91 |
|
92 |
# Gradio Interface
|