Spaces:
Build error
Build error
#importing the necessary libraries | |
import pandas as pd | |
import numpy as np | |
import gradio as gr | |
from sentence_transformers import SentenceTransformer | |
from keybert import KeyBERT | |
from keyphrase_vectorizers import KeyphraseCountVectorizer | |
# Defining a function to read in the text file | |
def read_in_text(url): | |
with open(url, 'r') as file: | |
article = file.read() | |
return article | |
#tmp_model = SentenceTransformer('valurank/MiniLM-L6-Keyword-Extraction') | |
kw_extractor = KeyBERT('valurank/MiniLM-L6-Keyword-Extraction') | |
def get_keybert_results_with_vectorizer(text, number_of_results=20): | |
try: | |
keywords = kw_extractor.extract_keywords(text, vectorizer=KeyphraseCountVectorizer(), stop_words=None, top_n=number_of_results) | |
keywords = [i for i in keywords if i[1] > 0.20] | |
keybert_diversity_phrases = [] | |
for i, j in keywords: | |
keybert_diversity_phrases.append(i) | |
output_df = pd.DataFrame() | |
output_df['keyword'] = np.array(keybert_diversity_phrases) | |
return output_df.head(20) | |
except Exception: | |
return "Error" | |
demo = gr.Interface(get_keybert_results_with_vectorizer, inputs=gr.inputs.Textbox(), | |
outputs=gr.outputs.Dataframe(), | |
title = "Keyword Extraction") | |
if __name__ == "__main__": | |
demo.launch(debug=True) | |