NER_with_spacy / app.py
abdulmatinomotoso's picture
Update app.py
f44e244
raw
history blame
856 Bytes
import spacy
import spacy_transformers
import gradio as gr
nlp = spacy.load("en_core_web_trf")
examples = [
"Does Chicago have any stores and does Joe live here?",
]
def ner(text):
doc = nlp(text)
final_output = []
flagged_categories = ['CARDINAL', 'DATE', 'MONEY', 'PERCENT', 'QUANTITY', 'TIME', 'ORDINAL']
for ent in doc.ents:
label = ent.label_
if label not in flagged_categories:
output = {'entity': ent.label_, 'word': ent.text, 'start': int(ent.start_char), 'end': int(ent.end_char)}
final_output.append(output)
return {"text": text, "entities": final_output}
demo = gr.Interface(ner,
gr.Textbox(placeholder="Enter sentence here..."),
gr.HighlightedText(),
examples=examples)
if __name__ == '__main__':
demo.launch(debug=True)