cyberosa commited on
Commit
c90b121
·
1 Parent(s): 0969e80

updating extreme cases

Browse files
Files changed (1) hide show
  1. tabs/tokens_dist.py +6 -2
tabs/tokens_dist.py CHANGED
@@ -4,7 +4,7 @@ import matplotlib.pyplot as plt
4
  import seaborn as sns
5
  from seaborn import FacetGrid
6
  import plotly.express as px
7
- import logging
8
  from typing import Tuple
9
 
10
 
@@ -63,7 +63,11 @@ def get_based_votes_distribution(market_id: str, all_markets: pd.DataFrame):
63
  def get_extreme_cases(live_fpmms: pd.DataFrame) -> Tuple:
64
  """Function to return the id of the best and worst case according to the dist gap metric"""
65
  # select markets with some trades
66
- selected_markets = live_fpmms.loc[live_fpmms["total_trades"] > 0]
 
 
 
 
67
  selected_markets.sort_values(by="dist_gap_perc", ascending=False, inplace=True)
68
  return (
69
  selected_markets.iloc[-1].id,
 
4
  import seaborn as sns
5
  from seaborn import FacetGrid
6
  import plotly.express as px
7
+ from datetime import datetime, UTC
8
  from typing import Tuple
9
 
10
 
 
63
  def get_extreme_cases(live_fpmms: pd.DataFrame) -> Tuple:
64
  """Function to return the id of the best and worst case according to the dist gap metric"""
65
  # select markets with some trades
66
+ today = datetime.now(UTC).date()
67
+ live_fpmms["sample_date"] = pd.to_datetime(live_fpmms["sample_timestamp"]).dt.date
68
+ selected_markets = live_fpmms.loc[
69
+ (live_fpmms["total_trades"] > 0) and (live_fpmms["sample_date"] == today)
70
+ ]
71
  selected_markets.sort_values(by="dist_gap_perc", ascending=False, inplace=True)
72
  return (
73
  selected_markets.iloc[-1].id,