rosacastillo's picture
updating week format starting on Monday, new staking contracts and new weekly data
285f2a6
import json
import sys
from typing import Any, List
from utils import RPC, DATA_DIR, TMP_DIR
import requests
from tqdm import tqdm
from web3 import Web3
import pandas as pd
import pickle
import os
from concurrent.futures import ThreadPoolExecutor, as_completed
NUM_WORKERS = 10
DEPRECATED_STAKING_PROGRAMS = {
"quickstart_alpha_everest": "0x5add592ce0a1B5DceCebB5Dcac086Cd9F9e3eA5C",
"quickstart_alpha_alpine": "0x2Ef503950Be67a98746F484DA0bBAdA339DF3326",
"quickstart_alpha_coastal": "0x43fB32f25dce34EB76c78C7A42C8F40F84BCD237",
}
STAKING_PROGRAMS_QS = {
"quickstart_beta_hobbyist": "0x389B46c259631Acd6a69Bde8B6cEe218230bAE8C",
"quickstart_beta_hobbyist_2": "0x238EB6993b90a978ec6AAD7530d6429c949C08DA",
"quickstart_beta_expert": "0x5344B7DD311e5d3DdDd46A4f71481bD7b05AAA3e",
"quickstart_beta_expert_2": "0xb964e44c126410df341ae04B13aB10A985fE3513",
"quickstart_beta_expert_3": "0x80faD33Cadb5F53f9D29F02Db97D682E8b101618",
"quickstart_beta_expert_4": "0xaD9d891134443B443D7F30013c7e14Fe27F2E029",
"quickstart_beta_expert_5": "0xE56dF1E563De1B10715cB313D514af350D207212",
"quickstart_beta_expert_6": "0x2546214aEE7eEa4bEE7689C81231017CA231Dc93",
"quickstart_beta_expert_7": "0xD7A3C8b975f71030135f1a66e9e23164d54fF455",
"quickstart_beta_expert_8": "0x356C108D49C5eebd21c84c04E9162de41933030c",
"quickstart_beta_expert_9": "0x17dBAe44BC5618Cc254055b386A29576b4F87015",
"quickstart_beta_expert_10": "0xB0ef657b8302bd2c74B6E6D9B2b4b39145b19c6f",
"quickstart_beta_expert_11": "0x3112c1613eAC3dBAE3D4E38CeF023eb9E2C91CF7",
"quickstart_beta_expert_12": "0xF4a75F476801B3fBB2e7093aCDcc3576593Cc1fc",
}
STAKING_PROGRAMS_PEARL = {
"pearl_alpha": "0xEE9F19b5DF06c7E8Bfc7B28745dcf944C504198A",
"pearl_beta": "0xeF44Fb0842DDeF59D37f85D61A1eF492bbA6135d",
"pearl_beta_2": "0x1c2F82413666d2a3fD8bC337b0268e62dDF67434",
"pearl_beta_3": "0xBd59Ff0522aA773cB6074ce83cD1e4a05A457bc1",
"pearl_beta_4": "0x3052451e1eAee78e62E169AfdF6288F8791F2918",
"pearl_beta_5": "0x4Abe376Fda28c2F43b84884E5f822eA775DeA9F4",
}
SERVICE_REGISTRY_ADDRESS = "0x9338b5153AE39BB89f50468E608eD9d764B755fD"
def _get_contract(address: str) -> Any:
w3 = Web3(Web3.HTTPProvider(RPC))
abi = _get_abi(address)
contract = w3.eth.contract(address=Web3.to_checksum_address(address), abi=abi)
return contract
def _get_abi(address: str) -> List:
contract_abi_url = (
"https://gnosis.blockscout.com/api/v2/smart-contracts/{contract_address}"
)
response = requests.get(contract_abi_url.format(contract_address=address)).json()
if "result" in response:
result = response["result"]
try:
abi = json.loads(result)
except json.JSONDecodeError:
print("Error: Failed to parse 'result' field as JSON")
sys.exit(1)
else:
abi = response.get("abi")
return abi if abi else []
def get_service_safe(service_id: int) -> str:
"""Gets the service Safe"""
service_registry = _get_contract(SERVICE_REGISTRY_ADDRESS)
service_safe_address = service_registry.functions.getService(service_id).call()[1]
return service_safe_address
def list_contract_functions(contract):
function_names = []
for item in contract.abi:
if item.get("type") == "function":
function_names.append(item.get("name"))
return function_names
def get_service_data(service_registry: Any, service_id: int) -> dict:
tmp_map = {}
# Get the list of addresses
# print(f"getting addresses from service id ={service_id}")
# available_functions = list_contract_functions(service_registry)
# print("Available Contract Functions:")
# for func in available_functions:
# print(f"- {func}")
data = service_registry.functions.getService(service_id).call()
try:
owner_data = service_registry.functions.ownerOf(service_id).call()
except Exception as e:
tqdm.write(f"Error: no owner data infor from {service_id}")
return None
# print(f"owner data = {owner_data}")
address = data[1]
state = data[-1]
# print(f"address = {address}")
# print(f"state={state}")
# PEARL trade
if address != "0x0000000000000000000000000000000000000000":
tmp_map[service_id] = {
"safe_address": address,
"state": state,
"owner_address": owner_data,
}
return tmp_map
def update_service_map(start: int = 1, end: int = 2000):
if os.path.exists(DATA_DIR / "service_map.pkl"):
with open(DATA_DIR / "service_map.pkl", "rb") as f:
service_map = pickle.load(f)
else:
service_map = {}
print(f"updating service map from service id={start}")
# we do not know which is the last service id right now
service_registry = _get_contract(SERVICE_REGISTRY_ADDRESS)
with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:
futures = []
for service_id in range(start, end):
futures.append(
executor.submit(
get_service_data,
service_registry,
service_id,
)
)
for future in tqdm(
as_completed(futures),
total=len(futures),
desc=f"Fetching all service data from contracts",
):
partial_dict = future.result()
if partial_dict:
service_map.update(partial_dict)
with open(DATA_DIR / "service_map.pkl", "wb") as f:
pickle.dump(service_map, f)
def check_owner_staking_contract(owner_address: str) -> str:
staking = "non_staking"
owner_address = owner_address.lower()
# check quickstart staking contracts
qs_list = [x.lower() for x in STAKING_PROGRAMS_QS.values()]
if owner_address in qs_list:
return "quickstart"
# check pearl staking contracts
pearl_list = [x.lower() for x in STAKING_PROGRAMS_PEARL.values()]
if owner_address in pearl_list:
return "pearl"
# check legacy staking contracts
deprec_list = [x.lower() for x in DEPRECATED_STAKING_PROGRAMS.values()]
if owner_address in deprec_list:
return "quickstart"
return staking
def get_trader_address_staking(trader_address: str, service_map: dict) -> str:
# check if there is any service id linked with that trader address
found_key = -1
for key, value in service_map.items():
if value["safe_address"].lower() == trader_address.lower():
# found a service
found_key = key
break
if found_key == -1:
return "non_Olas"
owner = service_map[found_key]["owner_address"]
return check_owner_staking_contract(owner_address=owner)
def label_trades_by_staking(trades_df: pd.DataFrame, start: int = None) -> None:
with open(DATA_DIR / "service_map.pkl", "rb") as f:
service_map = pickle.load(f)
# get the last service id
keys = service_map.keys()
if start is None:
last_key = max(keys)
else:
last_key = start
print(f"last service key = {last_key}")
update_service_map(start=last_key)
all_traders = trades_df.trader_address.unique()
trades_df["staking"] = ""
for trader in tqdm(all_traders, desc="Labeling traders by staking", unit="trader"):
# tqdm.write(f"checking trader {trader}")
staking_label = get_trader_address_staking(trader, service_map)
if staking_label:
trades_df.loc[trades_df["trader_address"] == trader, "staking"] = (
staking_label
)
# tqdm.write(f"statking label {staking_label}")
return trades_df
def generate_retention_activity_file():
tools = pd.read_parquet(TMP_DIR / "tools.parquet")
tools["request_time"] = pd.to_datetime(tools["request_time"])
tools["request_date"] = tools["request_time"].dt.date
tools = tools.sort_values(by="request_time", ascending=True)
reduced_tools_df = tools[
["trader_address", "request_time", "market_creator", "request_date"]
]
print(f"length of reduced tools before labeling = {len(reduced_tools_df)}")
reduced_tools_df = label_trades_by_staking(trades_df=reduced_tools_df)
print(f"length of reduced tools after labeling = {len(reduced_tools_df)}")
reduced_tools_df = reduced_tools_df.sort_values(by="request_time", ascending=True)
reduced_tools_df["month_year_week"] = (
pd.to_datetime(tools["request_time"])
.dt.to_period("W")
.dt.start_time.dt.strftime("%b-%d-%Y")
)
reduced_tools_df.to_parquet(TMP_DIR / "retention_activity.parquet")
return True
def check_list_addresses(address_list: list):
with open(DATA_DIR / "service_map.pkl", "rb") as f:
service_map = pickle.load(f)
# check if it is part of any service id on the map
mapping = {}
print(f"length of service map={len(service_map)}")
keys = service_map.keys()
last_key = max(keys)
print(f"last service key = {last_key}")
update_service_map(start=last_key)
found_key = -1
for trader_address in address_list:
for key, value in service_map.items():
if value["safe_address"].lower() == trader_address.lower():
# found a service
found_key = key
mapping[trader_address] = "Olas"
if found_key == -1:
mapping[trader_address] = "non_Olas"
print("mapping")
print(mapping)
def check_service_map():
with open(DATA_DIR / "service_map.pkl", "rb") as f:
service_map = pickle.load(f)
# check if it is part of any service id on the map
mapping = {}
print(f"length of service map={len(service_map)}")
keys = service_map.keys()
last_key = max(keys)
print(f"last key ={last_key}")
missing_keys = 0
for i in range(1, last_key):
if i not in keys:
missing_keys += 1
print(f"missing key = {i}")
print(f"total missing keys = {missing_keys}")
if __name__ == "__main__":
# create_service_map()
# trades_df = pd.read_parquet(TMP_DIR / "all_trades_df.parquet")
# trades_df = trades_df.loc[trades_df["is_invalid"] == False]
# trades_df = label_trades_by_staking(trades_df=trades_df, start=8)
# print(trades_df.staking.value_counts())
# trades_df.to_parquet(TMP_DIR / "result_staking.parquet", index=False)
# generate_retention_activity_file()
a_list = [
"0x027592700fafc4db3221bb662d7bdc7f546a2bb5",
"0x0845f4ad01a2f41da618848c7a9e56b64377965e",
]
# check_list_addresses(address_list=a_list)
# update_service_map()
# check_service_map()
unknown_traders = pd.read_parquet(DATA_DIR / "unknown_traders.parquet")
unknown_traders = label_trades_by_staking(trades_df=unknown_traders)
unknown_traders.to_parquet(DATA_DIR / "unknown_traders.parquet", index=False)