|
import pandas as pd |
|
import gradio as gr |
|
import plotly.express as px |
|
import gc |
|
from datetime import datetime |
|
|
|
trade_metric_choices = [ |
|
"mech calls", |
|
"collateral amount", |
|
"earnings", |
|
"net earnings", |
|
"ROI", |
|
] |
|
|
|
|
|
tool_metric_choices = { |
|
"Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %": "win_perc", |
|
"Total Weekly Inaccurate Nr of Mech Tool Responses": "losses", |
|
"Total Weekly Accurate Nr of Mech Tool Responses": "wins", |
|
"Total Weekly Nr of Mech Tool Requests": "total_request", |
|
} |
|
|
|
default_trade_metric = "ROI" |
|
|
|
default_tool_metric = "Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %" |
|
|
|
HEIGHT = 600 |
|
WIDTH = 1000 |
|
|
|
|
|
def get_metrics( |
|
metric_name: str, column_name: str, market_creator: str, trades_df: pd.DataFrame |
|
) -> pd.DataFrame: |
|
|
|
trades_filtered = trades_df[trades_df["creation_timestamp"] > "2023-09-01"] |
|
if market_creator != "all": |
|
trades_filtered = trades_filtered.loc[ |
|
trades_filtered["market_creator"] == market_creator |
|
] |
|
|
|
trades_filtered = ( |
|
trades_filtered.groupby("month_year_week", sort=False)[column_name] |
|
.quantile([0.25, 0.5, 0.75]) |
|
.unstack() |
|
) |
|
|
|
trades_filtered = trades_filtered.melt( |
|
id_vars=["month_year_week"], var_name="percentile", value_name=metric_name |
|
) |
|
trades_filtered.columns = trades_filtered.columns.astype(str) |
|
trades_filtered.reset_index(inplace=True) |
|
trades_filtered.columns = [ |
|
"month_year_week", |
|
"25th_percentile", |
|
"50th_percentile", |
|
"75th_percentile", |
|
] |
|
|
|
trades_filtered = trades_filtered.melt( |
|
id_vars=["month_year_week"], var_name="percentile", value_name=metric_name |
|
) |
|
return trades_filtered |
|
|
|
|
|
def get_boxplot_metrics(column_name: str, trades_df: pd.DataFrame) -> pd.DataFrame: |
|
trades_filtered = trades_df[ |
|
["creation_timestamp", "month_year_week", "market_creator", column_name] |
|
] |
|
|
|
trades_filtered_all = trades_df.copy(deep=True) |
|
trades_filtered_all["market_creator"] = "all" |
|
|
|
|
|
all_filtered_trades = pd.concat( |
|
[trades_filtered, trades_filtered_all], ignore_index=True |
|
) |
|
all_filtered_trades = all_filtered_trades.sort_values( |
|
by="creation_timestamp", ascending=True |
|
) |
|
gc.collect() |
|
return all_filtered_trades |
|
|
|
|
|
def plot2_trade_details( |
|
metric_name: str, market_creator: str, trades_df: pd.DataFrame |
|
) -> gr.Plot: |
|
"""Plots the trade details for the given trade detail.""" |
|
|
|
if metric_name == "mech calls": |
|
metric_name = "mech_calls" |
|
column_name = "num_mech_calls" |
|
yaxis_title = "Nr of mech calls per trade" |
|
elif metric_name == "ROI": |
|
column_name = "roi" |
|
yaxis_title = "ROI (net profit/cost)" |
|
elif metric_name == "collateral amount": |
|
metric_name = "collateral_amount" |
|
column_name = metric_name |
|
yaxis_title = "Collateral amount per trade (xDAI)" |
|
elif metric_name == "net earnings": |
|
metric_name = "net_earnings" |
|
column_name = metric_name |
|
yaxis_title = "Net profit per trade (xDAI)" |
|
else: |
|
column_name = metric_name |
|
yaxis_title = "Gross profit per trade (xDAI)" |
|
|
|
trades_filtered = get_metrics(metric_name, column_name, market_creator, trades_df) |
|
fig = px.line( |
|
trades_filtered, x="month_year_week", y=metric_name, color="percentile" |
|
) |
|
fig.update_layout( |
|
xaxis_title="Week", |
|
yaxis_title=yaxis_title, |
|
legend=dict(yanchor="top", y=0.5), |
|
) |
|
fig.update_xaxes(tickformat="%b %d\n%Y") |
|
return gr.Plot( |
|
value=fig, |
|
) |
|
|
|
|
|
def plot_trade_metrics( |
|
metric_name: str, trades_df: pd.DataFrame, trader_filter: str = None |
|
) -> gr.Plot: |
|
"""Plots the trade metrics.""" |
|
|
|
if metric_name == "mech calls": |
|
metric_name = "mech_calls" |
|
column_name = "num_mech_calls" |
|
yaxis_title = "Nr of mech calls per trade" |
|
elif metric_name == "ROI": |
|
column_name = "roi" |
|
yaxis_title = "ROI (net profit/cost)" |
|
elif metric_name == "collateral amount": |
|
metric_name = "collateral_amount" |
|
column_name = metric_name |
|
yaxis_title = "Collateral amount per trade (xDAI)" |
|
elif metric_name == "net earnings": |
|
metric_name = "net_earnings" |
|
column_name = metric_name |
|
yaxis_title = "Net profit per trade (xDAI)" |
|
else: |
|
column_name = metric_name |
|
yaxis_title = "Gross profit per trade (xDAI)" |
|
|
|
color_discrete = ["purple", "darkgoldenrod", "darkgreen"] |
|
if trader_filter == "agent": |
|
trades_filtered = get_boxplot_metrics( |
|
column_name, trades_df.loc[trades_df["staking"] != "non_agent"] |
|
) |
|
color_discrete = ["darkviolet", "goldenrod", "green"] |
|
elif trader_filter == "non_agent": |
|
trades_filtered = get_boxplot_metrics( |
|
column_name, trades_df.loc[trades_df["staking"] == "non_agent"] |
|
) |
|
else: |
|
trades_filtered = get_boxplot_metrics(column_name, trades_df) |
|
|
|
all_dates_dt = sorted( |
|
[ |
|
datetime.strptime(date, "%b-%d") |
|
for date in trades_filtered["month_year_week"].unique() |
|
] |
|
) |
|
|
|
all_dates = [date.strftime("%b-%d") for date in all_dates_dt] |
|
fig = px.box( |
|
trades_filtered, |
|
x="month_year_week", |
|
y=column_name, |
|
color="market_creator", |
|
color_discrete_sequence=color_discrete, |
|
category_orders={"market_creator": ["pearl", "quickstart", "all"]}, |
|
) |
|
fig.update_traces(boxmean=True) |
|
fig.update_layout( |
|
xaxis_title="Week", |
|
yaxis_title=yaxis_title, |
|
legend=dict(yanchor="top", y=0.5), |
|
) |
|
fig.update_xaxes(tickformat="%b %d\n%Y") |
|
|
|
fig.update_layout(xaxis={"categoryorder": "array", "categoryarray": all_dates}) |
|
return gr.Plot( |
|
value=fig, |
|
) |
|
|
|
|
|
def get_trade_metrics_text() -> gr.Markdown: |
|
metric_text = """ |
|
## Description of the graph |
|
These metrics are computed weekly. The statistical measures are: |
|
* min, max, 25th(q1), 50th(median) and 75th(q2) percentiles |
|
* the upper and lower fences to delimit possible outliers |
|
* the average values as the dotted lines |
|
""" |
|
|
|
return gr.Markdown(metric_text) |
|
|