rosacastillo's picture
tools accuracy updates
6012e5c
raw
history blame
4.5 kB
import pandas as pd
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
from typing import Tuple
import plotly.express as px
VOLUME_FACTOR_REGULARIZATION = 0.5
UNSCALED_WEIGHTED_ACCURACY_INTERVAL = (-0.5, 100.5)
SCALED_WEIGHTED_ACCURACY_INTERVAL = (0, 1)
# tools palette as dictionary
tools_palette = {
"prediction-request-reasoning": "darkorchid",
"claude-prediction-offline": "rebeccapurple",
"prediction-request-reasoning-claude": "slateblue",
"prediction-request-rag-claude": "steelblue",
"prediction-online": "darkcyan",
"prediction-offline": "mediumaquamarine",
"claude-prediction-online": "mediumseagreen",
"prediction-online-sme": "yellowgreen",
"prediction-url-cot-claude": "gold",
"prediction-offline-sme": "orange",
"prediction-request-rag": "chocolate",
}
HEIGHT = 400
WIDTH = 1100
def scale_value(
value: float,
min_max_bounds: Tuple[float, float],
scale_bounds: Tuple[float, float] = (0, 1),
) -> float:
"""Perform min-max scaling on a value."""
min_, max_ = min_max_bounds
current_range = max_ - min_
# normalize between 0-1
std = (value - min_) / current_range
# scale between min_bound and max_bound
min_bound, max_bound = scale_bounds
target_range = max_bound - min_bound
return std * target_range + min_bound
def get_weighted_accuracy(row, global_requests: int):
"""Function to compute the weighted accuracy of a tool"""
return scale_value(
(
row["tool_accuracy"]
+ (row["total_requests"] / global_requests) * VOLUME_FACTOR_REGULARIZATION
),
UNSCALED_WEIGHTED_ACCURACY_INTERVAL,
SCALED_WEIGHTED_ACCURACY_INTERVAL,
)
def compute_weighted_accuracy(tools_accuracy: pd.DataFrame):
global_requests = tools_accuracy.total_requests.sum()
tools_accuracy["weighted_accuracy"] = tools_accuracy.apply(
lambda x: get_weighted_accuracy(x, global_requests), axis=1
)
return tools_accuracy
def plot_tools_accuracy_graph(tools_accuracy_info: pd.DataFrame):
tools_accuracy_info = tools_accuracy_info.sort_values(
by="tool_accuracy", ascending=False
)
plt.figure(figsize=(25, 10))
plot = sns.barplot(
tools_accuracy_info,
x="tool_accuracy",
y="tool",
hue="tool",
dodge=False,
palette=tools_palette,
)
plt.xlabel("Mech tool_accuracy (%)", fontsize=20)
plt.ylabel("tool", fontsize=20)
plt.tick_params(axis="y", labelsize=12)
return gr.Plot(value=plot.get_figure())
def plot_tools_accuracy_rotated_graph(tools_accuracy_info: pd.DataFrame):
tools_accuracy_info = tools_accuracy_info.sort_values(
by="tool_accuracy", ascending=False
)
fig = px.bar(
tools_accuracy_info,
x="tool",
y="tool_accuracy",
color="tool",
color_discrete_map=tools_palette,
)
fig.update_layout(
xaxis_title="Tool",
yaxis_title="Mech tool_accuracy (%)",
)
fig.update_layout(width=WIDTH, height=HEIGHT)
# fig.update_xaxes(tickangle=45)
fig.update_xaxes(showticklabels=False)
return gr.Plot(
value=fig,
)
def plot_tools_weighted_accuracy_graph(tools_accuracy_info: pd.DataFrame):
tools_accuracy_info = tools_accuracy_info.sort_values(
by="weighted_accuracy", ascending=False
)
# Create the Seaborn bar plot
# sns.set_theme(palette="viridis")
plt.figure(figsize=(25, 10))
plot = sns.barplot(
tools_accuracy_info,
x="weighted_accuracy",
y="tool",
hue="tool",
dodge=False,
palette=tools_palette,
)
plt.xlabel("Weighted accuracy metric", fontsize=20)
plt.ylabel("tool", fontsize=20)
plt.tick_params(axis="y", labelsize=12)
return gr.Plot(value=plot.get_figure())
def plot_tools_weighted_accuracy_rotated_graph(tools_accuracy_info: pd.DataFrame):
tools_accuracy_info = tools_accuracy_info.sort_values(
by="weighted_accuracy", ascending=False
)
fig = px.bar(
tools_accuracy_info,
x="tool",
y="weighted_accuracy",
color="tool",
color_discrete_map=tools_palette,
)
fig.update_layout(
xaxis_title="Tool",
yaxis_title="Weighted accuracy metric",
)
fig.update_layout(width=WIDTH, height=HEIGHT)
# fig.update_xaxes(tickangle=45)
fig.update_xaxes(showticklabels=False)
return gr.Plot(
value=fig,
)