Spaces:
Runtime error
Runtime error
cyberosa
commited on
Commit
β’
16d0da9
1
Parent(s):
e3f2881
disabling the run benchmark feature to fix the leaderboard
Browse files- .gitmodules +0 -3
- app.py +127 -125
- olas-predict-benchmark +0 -1
- tabs/faq.py +2 -2
.gitmodules
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
[submodule "olas-predict-benchmark"]
|
2 |
-
path = olas-predict-benchmark
|
3 |
-
url = https://github.com/valory-xyz/olas-predict-benchmark.git
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -11,69 +11,71 @@ from tabs.faq import (
|
|
11 |
about_the_tools,
|
12 |
)
|
13 |
from tabs.howto_benchmark import how_to_run
|
14 |
-
|
|
|
|
|
15 |
|
16 |
|
17 |
demo = gr.Blocks()
|
18 |
|
19 |
|
20 |
-
def run_benchmark_gradio(
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
):
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
|
51 |
-
|
52 |
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
|
58 |
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
|
72 |
-
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
|
78 |
|
79 |
with demo:
|
@@ -110,83 +112,83 @@ with demo:
|
|
110 |
gr.Markdown(how_to_run)
|
111 |
|
112 |
# fourth tab - run the benchmark
|
113 |
-
with gr.TabItem("π₯ Run the Benchmark"):
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
|
191 |
|
192 |
demo.queue(default_concurrency_limit=40).launch()
|
|
|
11 |
about_the_tools,
|
12 |
)
|
13 |
from tabs.howto_benchmark import how_to_run
|
14 |
+
|
15 |
+
# Feature temporarily disabled til HF support helps us with the Space Error
|
16 |
+
# from tabs.run_benchmark import run_benchmark_main
|
17 |
|
18 |
|
19 |
demo = gr.Blocks()
|
20 |
|
21 |
|
22 |
+
# def run_benchmark_gradio(
|
23 |
+
# tool_name,
|
24 |
+
# model_name,
|
25 |
+
# num_questions,
|
26 |
+
# openai_api_key,
|
27 |
+
# anthropic_api_key,
|
28 |
+
# openrouter_api_key,
|
29 |
+
# ):
|
30 |
+
# """Run the benchmark using inputs."""
|
31 |
+
# if tool_name is None:
|
32 |
+
# return "Please enter the name of your tool."
|
33 |
+
# if (
|
34 |
+
# openai_api_key is None
|
35 |
+
# and anthropic_api_key is None
|
36 |
+
# and openrouter_api_key is None
|
37 |
+
# ):
|
38 |
+
# return "Please enter either OpenAI or Anthropic or OpenRouter API key."
|
39 |
+
|
40 |
+
# result = run_benchmark_main(
|
41 |
+
# tool_name,
|
42 |
+
# model_name,
|
43 |
+
# num_questions,
|
44 |
+
# openai_api_key,
|
45 |
+
# anthropic_api_key,
|
46 |
+
# openrouter_api_key,
|
47 |
+
# )
|
48 |
|
49 |
+
# if result == "completed":
|
50 |
+
# # get the results file in the results directory
|
51 |
+
# fns = glob("results/*.csv")
|
52 |
|
53 |
+
# print(f"Number of files in results directory: {len(fns)}")
|
54 |
|
55 |
+
# # convert to Path
|
56 |
+
# files = [Path(file) for file in fns]
|
57 |
|
58 |
+
# # get results and summary files
|
59 |
+
# results_files = [file for file in files if "results" in file.name]
|
60 |
|
61 |
+
# # the other file is the summary file
|
62 |
+
# summary_files = [file for file in files if "summary" in file.name]
|
63 |
|
64 |
+
# print(results_files, summary_files)
|
65 |
|
66 |
+
# # get the path with results
|
67 |
+
# results_df = pd.read_csv(results_files[0])
|
68 |
+
# summary_df = pd.read_csv(summary_files[0])
|
69 |
|
70 |
+
# # make sure all df float values are rounded to 4 decimal places
|
71 |
+
# results_df = results_df.round(4)
|
72 |
+
# summary_df = summary_df.round(4)
|
73 |
|
74 |
+
# return gr.Dataframe(value=results_df), gr.Dataframe(value=summary_df)
|
75 |
|
76 |
+
# return gr.Textbox(
|
77 |
+
# label="Benchmark Result", value=result, interactive=False
|
78 |
+
# ), gr.Textbox(label="Summary", value="")
|
79 |
|
80 |
|
81 |
with demo:
|
|
|
112 |
gr.Markdown(how_to_run)
|
113 |
|
114 |
# fourth tab - run the benchmark
|
115 |
+
# with gr.TabItem("π₯ Run the Benchmark"):
|
116 |
+
# with gr.Row():
|
117 |
+
# tool_name = gr.Dropdown(
|
118 |
+
# [
|
119 |
+
# "prediction-offline",
|
120 |
+
# "prediction-online",
|
121 |
+
# # "prediction-online-summarized-info",
|
122 |
+
# # "prediction-offline-sme",
|
123 |
+
# # "prediction-online-sme",
|
124 |
+
# "prediction-request-rag",
|
125 |
+
# "prediction-request-reasoning",
|
126 |
+
# # "prediction-url-cot-claude",
|
127 |
+
# # "prediction-request-rag-cohere",
|
128 |
+
# # "prediction-with-research-conservative",
|
129 |
+
# # "prediction-with-research-bold",
|
130 |
+
# ],
|
131 |
+
# label="Tool Name",
|
132 |
+
# info="Choose the tool to run",
|
133 |
+
# )
|
134 |
+
# model_name = gr.Dropdown(
|
135 |
+
# [
|
136 |
+
# "gpt-3.5-turbo-0125",
|
137 |
+
# "gpt-4-0125-preview",
|
138 |
+
# "claude-3-haiku-20240307",
|
139 |
+
# "claude-3-sonnet-20240229",
|
140 |
+
# "claude-3-opus-20240229",
|
141 |
+
# "databricks/dbrx-instruct:nitro",
|
142 |
+
# "nousresearch/nous-hermes-2-mixtral-8x7b-sft",
|
143 |
+
# # "cohere/command-r-plus",
|
144 |
+
# ],
|
145 |
+
# label="Model Name",
|
146 |
+
# info="Choose the model to use",
|
147 |
+
# )
|
148 |
+
# with gr.Row():
|
149 |
+
# openai_api_key = gr.Textbox(
|
150 |
+
# label="OpenAI API Key",
|
151 |
+
# placeholder="Enter your OpenAI API key here",
|
152 |
+
# type="password",
|
153 |
+
# )
|
154 |
+
# anthropic_api_key = gr.Textbox(
|
155 |
+
# label="Anthropic API Key",
|
156 |
+
# placeholder="Enter your Anthropic API key here",
|
157 |
+
# type="password",
|
158 |
+
# )
|
159 |
+
# openrouter_api_key = gr.Textbox(
|
160 |
+
# label="OpenRouter API Key",
|
161 |
+
# placeholder="Enter your OpenRouter API key here",
|
162 |
+
# type="password",
|
163 |
+
# )
|
164 |
+
# with gr.Row():
|
165 |
+
# num_questions = gr.Slider(
|
166 |
+
# minimum=1,
|
167 |
+
# maximum=340,
|
168 |
+
# value=10,
|
169 |
+
# label="Number of questions to run the benchmark on",
|
170 |
+
# )
|
171 |
+
# with gr.Row():
|
172 |
+
# run_button = gr.Button("Run Benchmark")
|
173 |
+
# with gr.Row():
|
174 |
+
# with gr.Accordion("Results", open=True):
|
175 |
+
# result = gr.Dataframe()
|
176 |
+
# with gr.Row():
|
177 |
+
# with gr.Accordion("Summary", open=False):
|
178 |
+
# summary = gr.Dataframe()
|
179 |
+
|
180 |
+
# run_button.click(
|
181 |
+
# run_benchmark_gradio,
|
182 |
+
# inputs=[
|
183 |
+
# tool_name,
|
184 |
+
# model_name,
|
185 |
+
# num_questions,
|
186 |
+
# openai_api_key,
|
187 |
+
# anthropic_api_key,
|
188 |
+
# openrouter_api_key,
|
189 |
+
# ],
|
190 |
+
# outputs=[result, summary],
|
191 |
+
# )
|
192 |
|
193 |
|
194 |
demo.queue(default_concurrency_limit=40).launch()
|
olas-predict-benchmark
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
Subproject commit cdb77050567ef441e231960cb2a26c20cf09cc30
|
|
|
|
tabs/faq.py
CHANGED
@@ -10,7 +10,7 @@ However, we can learn about the relative strengths of the different approaches (
|
|
10 |
This HF Space showcases the performance of the various models and workflows (called tools in the Olas ecosystem) for making predictions, in terms of accuracy and cost.\
|
11 |
|
12 |
|
13 |
-
π€ Pick a tool and run it on the benchmark using the "π₯ Run the Benchmark" page!
|
14 |
"""
|
15 |
|
16 |
about_the_tools = """\
|
@@ -48,4 +48,4 @@ about_olas_predict = """\
|
|
48 |
Olas is a network of autonomous services that can run complex logic in a decentralized manner, interacting with on- and off-chain data autonomously and continuously. For other use cases check out [olas.network](https://olas.network/).
|
49 |
Since 'Olas' means 'waves' in Spanish, it is sometimes referred to as the 'ocean of services' π.
|
50 |
The project is co-created by [Valory](https://www.valory.xyz/). Valory aspires to enable communities, organizations and countries to co-own AI systems, beginning with decentralized autonomous agents.
|
51 |
-
"""
|
|
|
10 |
This HF Space showcases the performance of the various models and workflows (called tools in the Olas ecosystem) for making predictions, in terms of accuracy and cost.\
|
11 |
|
12 |
|
13 |
+
π€ Pick a tool and run it on the benchmark using the "π₯ Run the Benchmark" page! (This feature is temporarily disabled due to an error in HF Spaces)
|
14 |
"""
|
15 |
|
16 |
about_the_tools = """\
|
|
|
48 |
Olas is a network of autonomous services that can run complex logic in a decentralized manner, interacting with on- and off-chain data autonomously and continuously. For other use cases check out [olas.network](https://olas.network/).
|
49 |
Since 'Olas' means 'waves' in Spanish, it is sometimes referred to as the 'ocean of services' π.
|
50 |
The project is co-created by [Valory](https://www.valory.xyz/). Valory aspires to enable communities, organizations and countries to co-own AI systems, beginning with decentralized autonomous agents.
|
51 |
+
"""
|