Spaces:
Running
Running
update app.py fro mode
Browse files
app.py
CHANGED
|
@@ -6,28 +6,43 @@ import plotly.express as px
|
|
| 6 |
from datetime import datetime, timedelta
|
| 7 |
import json
|
| 8 |
from web3 import Web3
|
|
|
|
| 9 |
from app_trans_new import create_transcation_visualizations,create_active_agents_visualizations
|
| 10 |
from app_value_locked import fetch_daily_value_locked
|
| 11 |
-
|
| 12 |
|
|
|
|
| 13 |
OPTIMISM_RPC_URL = os.getenv('OPTIMISM_RPC_URL')
|
| 14 |
-
|
| 15 |
-
# Initialize a Web3 instance
|
| 16 |
-
web3 = Web3(Web3.HTTPProvider(OPTIMISM_RPC_URL))
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
# Contract
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
# Load the ABI from the provided JSON file
|
| 26 |
with open('./contracts/service_registry_abi.json', 'r') as abi_file:
|
| 27 |
contract_abi = json.load(abi_file)
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
def get_transfers(integrator: str, wallet: str) -> str:
|
| 33 |
url = f"https://li.quest/v1/analytics/transfers?&wallet={wallet}&fromTimestamp=1726165800"
|
|
@@ -35,91 +50,48 @@ def get_transfers(integrator: str, wallet: str) -> str:
|
|
| 35 |
response = requests.get(url, headers=headers)
|
| 36 |
return response.json()
|
| 37 |
|
| 38 |
-
def load_activity_checker_contract(w3, staking_token_address):
|
| 39 |
-
"""
|
| 40 |
-
Loads the Staking Token and Activity Checker contracts.
|
| 41 |
-
|
| 42 |
-
:param w3: Web3 instance
|
| 43 |
-
:param staking_token_address: Address of the staking token contract
|
| 44 |
-
:return: Tuple of (Staking Token contract instance, Activity Checker contract instance)
|
| 45 |
-
"""
|
| 46 |
-
try:
|
| 47 |
-
# Load the ABI file for the Staking Token contract
|
| 48 |
-
with open('./contracts/StakingToken.json', "r", encoding="utf-8") as file:
|
| 49 |
-
staking_token_data = json.load(file)
|
| 50 |
-
|
| 51 |
-
staking_token_abi = staking_token_data.get("abi", [])
|
| 52 |
-
|
| 53 |
-
# Create the Staking Token contract instance
|
| 54 |
-
staking_token_contract = w3.eth.contract(address=staking_token_address, abi=staking_token_abi)
|
| 55 |
-
|
| 56 |
-
# Get the activity checker contract address from staking_token_contract
|
| 57 |
-
activity_checker_address = staking_token_contract.functions.activityChecker().call()
|
| 58 |
-
|
| 59 |
-
# Load the ABI file for the Activity Checker contract
|
| 60 |
-
with open('./contracts/StakingActivityChecker.json', "r", encoding="utf-8") as file:
|
| 61 |
-
activity_checker_data = json.load(file)
|
| 62 |
-
|
| 63 |
-
activity_checker_abi = activity_checker_data.get("abi", [])
|
| 64 |
-
|
| 65 |
-
# Create the Activity Checker contract instance
|
| 66 |
-
activity_checker_contract = w3.eth.contract(address=activity_checker_address, abi=activity_checker_abi)
|
| 67 |
-
|
| 68 |
-
return staking_token_contract, activity_checker_contract
|
| 69 |
-
|
| 70 |
-
except Exception as e:
|
| 71 |
-
print(f"An error occurred while loading the contracts: {e}")
|
| 72 |
-
raise
|
| 73 |
-
|
| 74 |
-
|
| 75 |
def fetch_and_aggregate_transactions():
|
| 76 |
-
total_services = service_registry.functions.totalSupply().call()
|
| 77 |
aggregated_transactions = []
|
| 78 |
daily_agent_counts = {}
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
if multisig_nonces > 0:
|
| 113 |
-
daily_agents_with_transactions[date_str].add(agent_address)
|
| 114 |
-
daily_agent_counts[date_str].add(agent_address)
|
| 115 |
-
# Convert set to count
|
| 116 |
daily_agent_counts = {date: len(agents) for date, agents in daily_agent_counts.items()}
|
| 117 |
-
|
| 118 |
-
return aggregated_transactions, daily_agent_counts, daily_agents_with_transactions
|
| 119 |
|
| 120 |
# Function to parse the transaction data and prepare it for visualization
|
| 121 |
def process_transactions_and_agents(data):
|
| 122 |
-
transactions, daily_agent_counts
|
| 123 |
|
| 124 |
# Convert the data into a pandas DataFrame for easy manipulation
|
| 125 |
rows = []
|
|
@@ -154,99 +126,35 @@ def process_transactions_and_agents(data):
|
|
| 154 |
})
|
| 155 |
|
| 156 |
df_transactions = pd.DataFrame(rows)
|
| 157 |
-
|
| 158 |
df_agents = pd.DataFrame(list(daily_agent_counts.items()), columns=['date', 'agent_count'])
|
| 159 |
-
df_agents_with_transactions = pd.DataFrame(list(daily_agents_with_transactions.items()), columns=['date', 'agent_count_with_transactions'])
|
| 160 |
-
|
| 161 |
-
# Convert the date column to datetime
|
| 162 |
df_agents['date'] = pd.to_datetime(df_agents['date'])
|
| 163 |
-
df_agents_with_transactions['date'] = pd.to_datetime(df_agents_with_transactions['date'])
|
| 164 |
-
|
| 165 |
-
# Convert to week periods
|
| 166 |
df_agents['week'] = df_agents['date'].dt.to_period('W').apply(lambda r: r.start_time)
|
| 167 |
-
df_agents_with_transactions['week'] = df_agents_with_transactions['date'].dt.to_period('W').apply(lambda r: r.start_time)
|
| 168 |
|
| 169 |
-
# Group by week
|
| 170 |
df_agents_weekly = df_agents[['week', 'agent_count']].groupby('week').sum().reset_index()
|
| 171 |
-
df_agents_with_transactions_weekly = df_agents_with_transactions[['week', 'agent_count_with_transactions']].groupby('week').sum().reset_index()
|
| 172 |
|
| 173 |
-
return df_transactions,
|
| 174 |
|
| 175 |
# Function to create visualizations based on the metrics
|
| 176 |
def create_visualizations():
|
| 177 |
transactions_data = fetch_and_aggregate_transactions()
|
| 178 |
-
df_transactions,
|
| 179 |
-
# Map chain IDs to chain names
|
| 180 |
-
|
| 181 |
-
# Fetch daily value locked data
|
| 182 |
-
df_tvl = fetch_daily_value_locked()
|
| 183 |
-
|
| 184 |
-
# Calculate total value locked per chain per day
|
| 185 |
-
df_tvl["total_value_locked_usd"] = df_tvl["amount0_usd"] + df_tvl["amount1_usd"]
|
| 186 |
-
df_tvl_daily = df_tvl.groupby(["date", "chain_name"])["total_value_locked_usd"].sum().reset_index()
|
| 187 |
-
df_tvl_daily['date'] = pd.to_datetime(df_tvl_daily['date'])
|
| 188 |
-
|
| 189 |
-
# Filter out dates with zero total value locked
|
| 190 |
-
df_tvl_daily = df_tvl_daily[df_tvl_daily["total_value_locked_usd"] > 0]
|
| 191 |
-
chain_name_map = {
|
| 192 |
-
"optimism": "Optimism",
|
| 193 |
-
"base": "Base",
|
| 194 |
-
"ethereum": "Ethereum"
|
| 195 |
-
}
|
| 196 |
-
df_tvl_daily["chain_name"] = df_tvl_daily["chain_name"].map(chain_name_map)
|
| 197 |
-
|
| 198 |
-
# Plot total value locked
|
| 199 |
-
fig_tvl = px.bar(
|
| 200 |
-
df_tvl_daily,
|
| 201 |
-
x="date",
|
| 202 |
-
y="total_value_locked_usd",
|
| 203 |
-
color="chain_name",
|
| 204 |
-
opacity=0.7,
|
| 205 |
-
title="Total Volume Invested in Pools in Different Chains Daily",
|
| 206 |
-
labels={"date": "Date","chain_name": "Transaction Chain", "total_value_locked_usd": "Total Volume Invested (USD)"},
|
| 207 |
-
barmode='stack',
|
| 208 |
-
color_discrete_map={
|
| 209 |
-
"Optimism": "blue",
|
| 210 |
-
"Base": "purple",
|
| 211 |
-
"Ethereum": "darkgreen"
|
| 212 |
-
}
|
| 213 |
-
)
|
| 214 |
-
fig_tvl.update_layout(
|
| 215 |
-
xaxis_title=None,
|
| 216 |
-
yaxis=dict(tickmode='linear', tick0=0, dtick=1),
|
| 217 |
-
xaxis=dict(
|
| 218 |
-
tickmode='array',
|
| 219 |
-
tickvals=df_tvl_daily['date'],
|
| 220 |
-
ticktext=df_tvl_daily['date'].dt.strftime('%b %d'),
|
| 221 |
-
tickangle=-45,
|
| 222 |
-
),
|
| 223 |
-
bargap=0.6, # Increase gap between bar groups (0-1)
|
| 224 |
-
bargroupgap=0.1, # Decrease gap between bars in a group (0-1)
|
| 225 |
-
height=600, # Specify width to prevent bars from being too wide
|
| 226 |
-
margin=dict(l=50, r=50, t=50, b=50), # Add margins
|
| 227 |
-
showlegend=True,
|
| 228 |
-
template='plotly_white'
|
| 229 |
-
)
|
| 230 |
-
fig_tvl.update_xaxes(tickformat="%b %d")
|
| 231 |
-
|
| 232 |
|
| 233 |
chain_name_map = {
|
| 234 |
10: "Optimism",
|
| 235 |
8453: "Base",
|
| 236 |
1: "Ethereum",
|
|
|
|
| 237 |
}
|
|
|
|
| 238 |
df_transactions["sending_chain"] = df_transactions["sending_chain"].map(chain_name_map)
|
| 239 |
df_transactions["receiving_chain"] = df_transactions["receiving_chain"].map(chain_name_map)
|
| 240 |
|
| 241 |
-
# Ensure that chain IDs are strings for consistent grouping
|
| 242 |
df_transactions["sending_chain"] = df_transactions["sending_chain"].astype(str)
|
| 243 |
df_transactions["receiving_chain"] = df_transactions["receiving_chain"].astype(str)
|
| 244 |
df_transactions['date'] = pd.to_datetime(df_transactions['date'])
|
|
|
|
| 245 |
|
| 246 |
-
# Identify swap transactions
|
| 247 |
-
df_transactions["is_swap"] = df_transactions.apply(lambda x: x["sending_token_symbol"] != x["receiving_token_symbol"], axis=1)
|
| 248 |
-
|
| 249 |
-
# Total swaps per chain per day
|
| 250 |
swaps_per_chain = df_transactions[df_transactions["is_swap"]].groupby(["date", "sending_chain"]).size().reset_index(name="swap_count")
|
| 251 |
fig_swaps_chain = px.bar(
|
| 252 |
swaps_per_chain,
|
|
@@ -260,7 +168,8 @@ def create_visualizations():
|
|
| 260 |
color_discrete_map={
|
| 261 |
"Optimism": "blue",
|
| 262 |
"Ethereum": "darkgreen",
|
| 263 |
-
"Base": "purple"
|
|
|
|
| 264 |
}
|
| 265 |
)
|
| 266 |
fig_swaps_chain.update_layout(
|
|
@@ -269,14 +178,14 @@ def create_visualizations():
|
|
| 269 |
yaxis=dict(tickmode='linear', tick0=0, dtick=1),
|
| 270 |
xaxis=dict(
|
| 271 |
tickmode='array',
|
| 272 |
-
tickvals=[d for d in swaps_per_chain['date'] if d.weekday() == 0],
|
| 273 |
ticktext=[d.strftime('%m-%d') for d in swaps_per_chain['date'] if d.weekday() == 0],
|
| 274 |
tickangle=-45,
|
| 275 |
),
|
| 276 |
-
bargap=0.6,
|
| 277 |
-
bargroupgap=0.1,
|
| 278 |
-
height=600,
|
| 279 |
-
margin=dict(l=50, r=50, t=50, b=50),
|
| 280 |
showlegend=True,
|
| 281 |
legend=dict(
|
| 282 |
yanchor="top",
|
|
@@ -288,11 +197,8 @@ def create_visualizations():
|
|
| 288 |
)
|
| 289 |
fig_swaps_chain.update_xaxes(tickformat="%m-%d")
|
| 290 |
|
| 291 |
-
# Identify bridge transactions
|
| 292 |
-
# Identify bridge transactions
|
| 293 |
df_transactions["is_bridge"] = df_transactions.apply(lambda x: x["sending_chain"] != x["receiving_chain"], axis=1)
|
| 294 |
|
| 295 |
-
# Total bridges per chain per day
|
| 296 |
bridges_per_chain = df_transactions[df_transactions["is_bridge"]].groupby(["date", "sending_chain"]).size().reset_index(name="bridge_count")
|
| 297 |
fig_bridges_chain = px.bar(
|
| 298 |
bridges_per_chain,
|
|
@@ -306,7 +212,8 @@ def create_visualizations():
|
|
| 306 |
color_discrete_map={
|
| 307 |
"Optimism": "blue",
|
| 308 |
"Ethereum": "darkgreen",
|
| 309 |
-
"Base": "purple"
|
|
|
|
| 310 |
}
|
| 311 |
)
|
| 312 |
fig_bridges_chain.update_layout(
|
|
@@ -315,14 +222,14 @@ def create_visualizations():
|
|
| 315 |
yaxis=dict(tickmode='linear', tick0=0, dtick=1),
|
| 316 |
xaxis=dict(
|
| 317 |
tickmode='array',
|
| 318 |
-
tickvals=[d for d in bridges_per_chain['date'] if d.weekday() == 0],
|
| 319 |
ticktext=[d.strftime('%m-%d') for d in bridges_per_chain['date'] if d.weekday() == 0],
|
| 320 |
tickangle=-45,
|
| 321 |
),
|
| 322 |
-
bargap=0.6,
|
| 323 |
-
bargroupgap=0.1,
|
| 324 |
-
height=600,
|
| 325 |
-
margin=dict(l=50, r=50, t=50, b=50),
|
| 326 |
showlegend=True,
|
| 327 |
legend=dict(
|
| 328 |
yanchor="top",
|
|
@@ -333,46 +240,36 @@ def create_visualizations():
|
|
| 333 |
template='plotly_white'
|
| 334 |
)
|
| 335 |
fig_bridges_chain.update_xaxes(tickformat="%m-%d")
|
|
|
|
| 336 |
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
|
|
|
| 340 |
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
# Check for October 2, 2024 and update the value
|
| 345 |
-
daily_agents_df.loc[daily_agents_df['date'] == '2024-10-02', 'daily_agent_count'] = 2
|
| 346 |
-
|
| 347 |
-
# Calculate cumulative number of agents registered within the week up to each day
|
| 348 |
-
df_agents_with_transactions['week_start'] = df_agents_with_transactions['date'].dt.to_period("W").apply(lambda r: r.start_time)
|
| 349 |
-
cumulative_agents_df = df_agents_with_transactions.groupby(['week_start', 'date']).size().groupby(level=0).cumsum().reset_index(name='weekly_agent_count')
|
| 350 |
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
# Combine the data to ensure both dataframes align for plotting
|
| 355 |
-
combined_df = pd.merge(daily_agents_df, cumulative_agents_df, on='date', how='left')
|
| 356 |
-
|
| 357 |
-
# Create the bar chart with side-by-side bars
|
| 358 |
fig_agents_registered = go.Figure(data=[
|
| 359 |
go.Bar(
|
| 360 |
name='Daily nr of Registered Agents',
|
| 361 |
-
x=
|
| 362 |
-
y=
|
| 363 |
opacity=0.7,
|
| 364 |
marker_color='blue'
|
| 365 |
),
|
| 366 |
go.Bar(
|
| 367 |
name='Total Weekly Nr of Registered Agents',
|
| 368 |
-
x=
|
| 369 |
-
y=
|
| 370 |
opacity=0.7,
|
| 371 |
marker_color='purple'
|
| 372 |
)
|
| 373 |
])
|
| 374 |
|
| 375 |
-
# Update layout to group bars side by side for each day
|
| 376 |
fig_agents_registered.update_layout(
|
| 377 |
xaxis_title='Date',
|
| 378 |
yaxis_title='Number of Agents',
|
|
@@ -381,55 +278,18 @@ def create_visualizations():
|
|
| 381 |
yaxis=dict(tickmode='linear', tick0=0, dtick=1),
|
| 382 |
xaxis=dict(
|
| 383 |
tickmode='array',
|
| 384 |
-
tickvals=
|
| 385 |
-
ticktext=[d.strftime("%b %d") for d in
|
| 386 |
tickangle=-45
|
| 387 |
),
|
| 388 |
-
bargap=0.6,
|
| 389 |
-
height=600,
|
| 390 |
-
margin=dict(l=50, r=50, t=50, b=50),
|
| 391 |
showlegend=True,
|
| 392 |
template='plotly_white'
|
| 393 |
)
|
| 394 |
|
| 395 |
-
|
| 396 |
-
df_agents_with_transactions['day_of_week'] = df_agents_with_transactions['date'].dt.dayofweek
|
| 397 |
-
df_agents_with_transactions_weekly_avg = df_agents_with_transactions.groupby(['week', 'day_of_week'])['agent_count_with_transactions'].mean().reset_index()
|
| 398 |
-
df_agents_with_transactions_weekly_avg = df_agents_with_transactions_weekly_avg.groupby('week')['agent_count_with_transactions'].mean().reset_index()
|
| 399 |
-
# Number of agents with transactions per week
|
| 400 |
-
fig_agents_with_transactions_daily = px.bar(
|
| 401 |
-
df_agents_with_transactions_weekly,
|
| 402 |
-
x="week",
|
| 403 |
-
opacity=0.7,
|
| 404 |
-
y="agent_count_with_transactions",
|
| 405 |
-
title="Daily Active Agents: Weekly Average Nr of agents with at least 1 transaction daily",
|
| 406 |
-
labels={"week": "Week of", "agent_count_with_transactions": "Number of Agents with Transactions"},
|
| 407 |
-
color_discrete_sequence=["darkgreen"]
|
| 408 |
-
)
|
| 409 |
-
fig_agents_with_transactions_daily.update_layout(
|
| 410 |
-
title=dict(
|
| 411 |
-
x=0.5,y=0.95,xanchor='center',yanchor='top'), # Adjust vertical position and Center the title
|
| 412 |
-
yaxis=dict(tickmode='linear', tick0=0, dtick=1),
|
| 413 |
-
xaxis=dict(
|
| 414 |
-
tickmode='array',
|
| 415 |
-
tickvals=df_agents_with_transactions_weekly_avg['week'],
|
| 416 |
-
ticktext=df_agents_with_transactions_weekly_avg['week'].dt.strftime('%b %d'),
|
| 417 |
-
tickangle=0
|
| 418 |
-
),
|
| 419 |
-
bargap=0.6, # Increase gap between bar groups (0-1)
|
| 420 |
-
bargroupgap=0.1, # Decrease gap between bars in a group (0-1)
|
| 421 |
-
height=600, # Specify width to prevent bars from being too wide
|
| 422 |
-
margin=dict(l=50, r=50, t=50, b=50), # Add margins
|
| 423 |
-
showlegend=True,
|
| 424 |
-
legend=dict(
|
| 425 |
-
yanchor="top",
|
| 426 |
-
y=0.99,
|
| 427 |
-
xanchor="right",
|
| 428 |
-
x=0.99
|
| 429 |
-
)
|
| 430 |
-
)
|
| 431 |
-
|
| 432 |
-
return fig_swaps_chain, fig_bridges_chain, fig_agents_registered, fig_agents_with_transactions_daily,fig_tvl
|
| 433 |
|
| 434 |
# Gradio interface
|
| 435 |
def dashboard():
|
|
@@ -439,28 +299,20 @@ def dashboard():
|
|
| 439 |
fig_tx_chain = create_transcation_visualizations()
|
| 440 |
gr.Plot(fig_tx_chain)
|
| 441 |
|
| 442 |
-
fig_swaps_chain, fig_bridges_chain, fig_agents_registered
|
| 443 |
-
#Fetch and display visualizations
|
| 444 |
with gr.Tab("Swaps Daily"):
|
| 445 |
gr.Plot(fig_swaps_chain)
|
| 446 |
|
| 447 |
with gr.Tab("Bridges Daily"):
|
| 448 |
-
#fig_swaps_chain, fig_bridges_chain, fig_agents_daily, fig_agents_with_transactions_daily,fig_tvl = create_visualizations()
|
| 449 |
gr.Plot(fig_bridges_chain)
|
| 450 |
|
| 451 |
with gr.Tab("Nr of Agents Registered"):
|
| 452 |
-
#fig_swaps_chain, fig_bridges_chain, fig_agents_daily, fig_agents_with_transactions_daily,fig_tvl = create_visualizations()
|
| 453 |
gr.Plot(fig_agents_registered)
|
| 454 |
-
|
| 455 |
with gr.Tab("DAA"):
|
| 456 |
fig_agents_with_transactions_daily = create_active_agents_visualizations()
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
with gr.Tab("Total Value Locked"):
|
| 461 |
-
#fig_swaps_chain, fig_bridges_chain, fig_agents_daily, fig_agents_with_transactions_daily, fig_tvl,fig_tvl = create_visualizations()
|
| 462 |
-
gr.Plot(fig_tvl)
|
| 463 |
-
|
| 464 |
return demo
|
| 465 |
|
| 466 |
# Launch the dashboard
|
|
|
|
| 6 |
from datetime import datetime, timedelta
|
| 7 |
import json
|
| 8 |
from web3 import Web3
|
| 9 |
+
import os
|
| 10 |
from app_trans_new import create_transcation_visualizations,create_active_agents_visualizations
|
| 11 |
from app_value_locked import fetch_daily_value_locked
|
| 12 |
+
# Load environment variables from .env file
|
| 13 |
|
| 14 |
+
# RPC URLs
|
| 15 |
OPTIMISM_RPC_URL = os.getenv('OPTIMISM_RPC_URL')
|
| 16 |
+
MODE_RPC_URL = os.getenv('MODE_RPC_URL')
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# Initialize Web3 instances
|
| 19 |
+
web3_instances = {
|
| 20 |
+
'optimism': Web3(Web3.HTTPProvider(OPTIMISM_RPC_URL)),
|
| 21 |
+
'mode': Web3(Web3.HTTPProvider(MODE_RPC_URL))
|
| 22 |
+
}
|
| 23 |
|
| 24 |
+
# Contract addresses for service registries
|
| 25 |
+
contract_addresses = {
|
| 26 |
+
'optimism': '0x3d77596beb0f130a4415df3D2D8232B3d3D31e44',
|
| 27 |
+
'mode': '0x3C1fF68f5aa342D296d4DEe4Bb1cACCA912D95fE'
|
| 28 |
+
}
|
| 29 |
|
| 30 |
# Load the ABI from the provided JSON file
|
| 31 |
with open('./contracts/service_registry_abi.json', 'r') as abi_file:
|
| 32 |
contract_abi = json.load(abi_file)
|
| 33 |
|
| 34 |
+
# Create the contract instances
|
| 35 |
+
service_registries = {
|
| 36 |
+
chain_name: web3.eth.contract(address=contract_addresses[chain_name], abi=contract_abi)
|
| 37 |
+
for chain_name, web3 in web3_instances.items()
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
# Check if connections are successful
|
| 41 |
+
for chain_name, web3_instance in web3_instances.items():
|
| 42 |
+
if not web3_instance.is_connected():
|
| 43 |
+
raise Exception(f"Failed to connect to the {chain_name.capitalize()} network.")
|
| 44 |
+
else:
|
| 45 |
+
print(f"Successfully connected to the {chain_name.capitalize()} network.")
|
| 46 |
|
| 47 |
def get_transfers(integrator: str, wallet: str) -> str:
|
| 48 |
url = f"https://li.quest/v1/analytics/transfers?&wallet={wallet}&fromTimestamp=1726165800"
|
|
|
|
| 50 |
response = requests.get(url, headers=headers)
|
| 51 |
return response.json()
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
def fetch_and_aggregate_transactions():
|
|
|
|
| 54 |
aggregated_transactions = []
|
| 55 |
daily_agent_counts = {}
|
| 56 |
+
seen_agents = set()
|
| 57 |
+
|
| 58 |
+
for chain_name, service_registry in service_registries.items():
|
| 59 |
+
web3 = web3_instances[chain_name]
|
| 60 |
+
total_services = service_registry.functions.totalSupply().call()
|
| 61 |
+
for service_id in range(1, total_services + 1):
|
| 62 |
+
service = service_registry.functions.getService(service_id).call()
|
| 63 |
+
agent_ids = service[-1]
|
| 64 |
+
|
| 65 |
+
if 40 in agent_ids or 25 in agent_ids:
|
| 66 |
+
agent_address = service_registry.functions.getAgentInstances(service_id).call()[1][0]
|
| 67 |
+
response_transfers = get_transfers("valory", agent_address)
|
| 68 |
+
transfers = response_transfers.get("transfers", [])
|
| 69 |
+
|
| 70 |
+
if isinstance(transfers, list):
|
| 71 |
+
aggregated_transactions.extend(transfers)
|
| 72 |
+
|
| 73 |
+
# Track the daily number of agents
|
| 74 |
+
current_date = ""
|
| 75 |
+
creation_event = service_registry.events.CreateService.create_filter(from_block=0, argument_filters={'serviceId': service_id}).get_all_entries()
|
| 76 |
+
if creation_event:
|
| 77 |
+
block_number = creation_event[0]['blockNumber']
|
| 78 |
+
block = web3.eth.get_block(block_number)
|
| 79 |
+
creation_timestamp = datetime.fromtimestamp(block['timestamp'])
|
| 80 |
+
date_str = creation_timestamp.strftime('%Y-%m-%d')
|
| 81 |
+
current_date = date_str
|
| 82 |
+
|
| 83 |
+
# Ensure each agent is only counted once based on first registered date
|
| 84 |
+
if agent_address not in seen_agents:
|
| 85 |
+
seen_agents.add(agent_address)
|
| 86 |
+
if date_str not in daily_agent_counts:
|
| 87 |
+
daily_agent_counts[date_str] = set()
|
| 88 |
+
daily_agent_counts[date_str].add(agent_address)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
daily_agent_counts = {date: len(agents) for date, agents in daily_agent_counts.items()}
|
| 90 |
+
return aggregated_transactions, daily_agent_counts
|
|
|
|
| 91 |
|
| 92 |
# Function to parse the transaction data and prepare it for visualization
|
| 93 |
def process_transactions_and_agents(data):
|
| 94 |
+
transactions, daily_agent_counts = data
|
| 95 |
|
| 96 |
# Convert the data into a pandas DataFrame for easy manipulation
|
| 97 |
rows = []
|
|
|
|
| 126 |
})
|
| 127 |
|
| 128 |
df_transactions = pd.DataFrame(rows)
|
| 129 |
+
df_transactions = df_transactions.drop_duplicates()
|
| 130 |
df_agents = pd.DataFrame(list(daily_agent_counts.items()), columns=['date', 'agent_count'])
|
|
|
|
|
|
|
|
|
|
| 131 |
df_agents['date'] = pd.to_datetime(df_agents['date'])
|
|
|
|
|
|
|
|
|
|
| 132 |
df_agents['week'] = df_agents['date'].dt.to_period('W').apply(lambda r: r.start_time)
|
|
|
|
| 133 |
|
|
|
|
| 134 |
df_agents_weekly = df_agents[['week', 'agent_count']].groupby('week').sum().reset_index()
|
|
|
|
| 135 |
|
| 136 |
+
return df_transactions, df_agents, df_agents_weekly
|
| 137 |
|
| 138 |
# Function to create visualizations based on the metrics
|
| 139 |
def create_visualizations():
|
| 140 |
transactions_data = fetch_and_aggregate_transactions()
|
| 141 |
+
df_transactions, df_agents, df_agents_weekly = process_transactions_and_agents(transactions_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
chain_name_map = {
|
| 144 |
10: "Optimism",
|
| 145 |
8453: "Base",
|
| 146 |
1: "Ethereum",
|
| 147 |
+
34443: "Mode"
|
| 148 |
}
|
| 149 |
+
|
| 150 |
df_transactions["sending_chain"] = df_transactions["sending_chain"].map(chain_name_map)
|
| 151 |
df_transactions["receiving_chain"] = df_transactions["receiving_chain"].map(chain_name_map)
|
| 152 |
|
|
|
|
| 153 |
df_transactions["sending_chain"] = df_transactions["sending_chain"].astype(str)
|
| 154 |
df_transactions["receiving_chain"] = df_transactions["receiving_chain"].astype(str)
|
| 155 |
df_transactions['date'] = pd.to_datetime(df_transactions['date'])
|
| 156 |
+
df_transactions["is_swap"] = df_transactions.apply(lambda x: x["sending_chain"] == x["receiving_chain"], axis=1)
|
| 157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
swaps_per_chain = df_transactions[df_transactions["is_swap"]].groupby(["date", "sending_chain"]).size().reset_index(name="swap_count")
|
| 159 |
fig_swaps_chain = px.bar(
|
| 160 |
swaps_per_chain,
|
|
|
|
| 168 |
color_discrete_map={
|
| 169 |
"Optimism": "blue",
|
| 170 |
"Ethereum": "darkgreen",
|
| 171 |
+
"Base": "purple",
|
| 172 |
+
"Mode": "orange"
|
| 173 |
}
|
| 174 |
)
|
| 175 |
fig_swaps_chain.update_layout(
|
|
|
|
| 178 |
yaxis=dict(tickmode='linear', tick0=0, dtick=1),
|
| 179 |
xaxis=dict(
|
| 180 |
tickmode='array',
|
| 181 |
+
tickvals=[d for d in swaps_per_chain['date'] if d.weekday() == 0],
|
| 182 |
ticktext=[d.strftime('%m-%d') for d in swaps_per_chain['date'] if d.weekday() == 0],
|
| 183 |
tickangle=-45,
|
| 184 |
),
|
| 185 |
+
bargap=0.6,
|
| 186 |
+
bargroupgap=0.1,
|
| 187 |
+
height=600,
|
| 188 |
+
margin=dict(l=50, r=50, t=50, b=50),
|
| 189 |
showlegend=True,
|
| 190 |
legend=dict(
|
| 191 |
yanchor="top",
|
|
|
|
| 197 |
)
|
| 198 |
fig_swaps_chain.update_xaxes(tickformat="%m-%d")
|
| 199 |
|
|
|
|
|
|
|
| 200 |
df_transactions["is_bridge"] = df_transactions.apply(lambda x: x["sending_chain"] != x["receiving_chain"], axis=1)
|
| 201 |
|
|
|
|
| 202 |
bridges_per_chain = df_transactions[df_transactions["is_bridge"]].groupby(["date", "sending_chain"]).size().reset_index(name="bridge_count")
|
| 203 |
fig_bridges_chain = px.bar(
|
| 204 |
bridges_per_chain,
|
|
|
|
| 212 |
color_discrete_map={
|
| 213 |
"Optimism": "blue",
|
| 214 |
"Ethereum": "darkgreen",
|
| 215 |
+
"Base": "purple",
|
| 216 |
+
"Mode": "orange"
|
| 217 |
}
|
| 218 |
)
|
| 219 |
fig_bridges_chain.update_layout(
|
|
|
|
| 222 |
yaxis=dict(tickmode='linear', tick0=0, dtick=1),
|
| 223 |
xaxis=dict(
|
| 224 |
tickmode='array',
|
| 225 |
+
tickvals=[d for d in bridges_per_chain['date'] if d.weekday() == 0],
|
| 226 |
ticktext=[d.strftime('%m-%d') for d in bridges_per_chain['date'] if d.weekday() == 0],
|
| 227 |
tickangle=-45,
|
| 228 |
),
|
| 229 |
+
bargap=0.6,
|
| 230 |
+
bargroupgap=0.1,
|
| 231 |
+
height=600,
|
| 232 |
+
margin=dict(l=50, r=50, t=50, b=50),
|
| 233 |
showlegend=True,
|
| 234 |
legend=dict(
|
| 235 |
yanchor="top",
|
|
|
|
| 240 |
template='plotly_white'
|
| 241 |
)
|
| 242 |
fig_bridges_chain.update_xaxes(tickformat="%m-%d")
|
| 243 |
+
df_agents['date'] = pd.to_datetime(df_agents['date'])
|
| 244 |
|
| 245 |
+
daily_agents_df = df_agents.groupby('date').agg({'agent_count': 'sum'}).reset_index()
|
| 246 |
+
daily_agents_df.rename(columns={'agent_count': 'daily_agent_count'}, inplace=True)
|
| 247 |
+
weekly_agents_df = df_agents.groupby('week').agg({'agent_count': 'sum'}).reset_index()
|
| 248 |
+
weekly_agents_df.rename(columns={'agent_count': 'weekly_agent_count'}, inplace=True)
|
| 249 |
|
| 250 |
+
merged_df = pd.merge(daily_agents_df, df_agents[['date', 'week']], on='date', how='left')
|
| 251 |
+
weekly_merged_df = pd.merge(merged_df, weekly_agents_df, on='week', how='left')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
+
adjustment_date = pd.to_datetime('2024-11-15')
|
| 254 |
+
weekly_merged_df.loc[weekly_merged_df['date'] == adjustment_date, 'daily_agent_count'] -= 1
|
| 255 |
+
weekly_merged_df.loc[weekly_merged_df['date'] == adjustment_date, 'weekly_agent_count'] -= 1
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
fig_agents_registered = go.Figure(data=[
|
| 257 |
go.Bar(
|
| 258 |
name='Daily nr of Registered Agents',
|
| 259 |
+
x=weekly_merged_df['date'],
|
| 260 |
+
y=weekly_merged_df['daily_agent_count'],
|
| 261 |
opacity=0.7,
|
| 262 |
marker_color='blue'
|
| 263 |
),
|
| 264 |
go.Bar(
|
| 265 |
name='Total Weekly Nr of Registered Agents',
|
| 266 |
+
x=weekly_merged_df['date'],
|
| 267 |
+
y=weekly_merged_df['weekly_agent_count'],
|
| 268 |
opacity=0.7,
|
| 269 |
marker_color='purple'
|
| 270 |
)
|
| 271 |
])
|
| 272 |
|
|
|
|
| 273 |
fig_agents_registered.update_layout(
|
| 274 |
xaxis_title='Date',
|
| 275 |
yaxis_title='Number of Agents',
|
|
|
|
| 278 |
yaxis=dict(tickmode='linear', tick0=0, dtick=1),
|
| 279 |
xaxis=dict(
|
| 280 |
tickmode='array',
|
| 281 |
+
tickvals=weekly_merged_df['date'],
|
| 282 |
+
ticktext=[d.strftime("%b %d") for d in weekly_merged_df['date']],
|
| 283 |
tickangle=-45
|
| 284 |
),
|
| 285 |
+
bargap=0.6,
|
| 286 |
+
height=600,
|
| 287 |
+
margin=dict(l=50, r=50, t=50, b=50),
|
| 288 |
showlegend=True,
|
| 289 |
template='plotly_white'
|
| 290 |
)
|
| 291 |
|
| 292 |
+
return fig_swaps_chain, fig_bridges_chain, fig_agents_registered
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
# Gradio interface
|
| 295 |
def dashboard():
|
|
|
|
| 299 |
fig_tx_chain = create_transcation_visualizations()
|
| 300 |
gr.Plot(fig_tx_chain)
|
| 301 |
|
| 302 |
+
fig_swaps_chain, fig_bridges_chain, fig_agents_registered = create_visualizations()
|
|
|
|
| 303 |
with gr.Tab("Swaps Daily"):
|
| 304 |
gr.Plot(fig_swaps_chain)
|
| 305 |
|
| 306 |
with gr.Tab("Bridges Daily"):
|
|
|
|
| 307 |
gr.Plot(fig_bridges_chain)
|
| 308 |
|
| 309 |
with gr.Tab("Nr of Agents Registered"):
|
|
|
|
| 310 |
gr.Plot(fig_agents_registered)
|
| 311 |
+
|
| 312 |
with gr.Tab("DAA"):
|
| 313 |
fig_agents_with_transactions_daily = create_active_agents_visualizations()
|
| 314 |
+
gr.Plot(fig_agents_with_transactions_daily)
|
| 315 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
return demo
|
| 317 |
|
| 318 |
# Launch the dashboard
|