mjlee
commited on
Commit
•
b59964c
1
Parent(s):
8966d80
0708_10
Browse files
app.py
CHANGED
@@ -19,10 +19,10 @@ base_model = base_model
|
|
19 |
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
20 |
|
21 |
sen_model = Classifier(base_model, num_labels=2, device='cpu', tokenizer=tokenizer)
|
22 |
-
sen_model.load_state_dict(torch.load(sen_model_file))
|
23 |
|
24 |
entity_model = Classifier(base_model, num_labels=2, device='cpu', tokenizer=tokenizer)
|
25 |
-
entity_model.load_state_dict(torch.load(entity_model_file))
|
26 |
|
27 |
|
28 |
def infer(test_sentence):
|
@@ -45,15 +45,15 @@ def infer(test_sentence):
|
|
45 |
|
46 |
tokenized_data = tokenizer(form_, pair_, padding='max_length', max_length=512, truncation=True)
|
47 |
|
48 |
-
input_ids = torch.tensor([tokenized_data['input_ids']])
|
49 |
-
attention_mask = torch.tensor([tokenized_data['attention_mask']])
|
50 |
|
51 |
first_sep = tokenized_data['input_ids'].index(2)
|
52 |
last_sep = tokenized_data['input_ids'][first_sep+2:].index(2) + (first_sep + 2)
|
53 |
mask = [0] * len(tokenized_data['input_ids'])
|
54 |
for i in range(first_sep + 2, last_sep):
|
55 |
mask[i] = 1
|
56 |
-
mask = torch.tensor([mask])
|
57 |
|
58 |
with torch.no_grad():
|
59 |
outputs = entity_model(input_ids, attention_mask, mask)
|
|
|
19 |
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
20 |
|
21 |
sen_model = Classifier(base_model, num_labels=2, device='cpu', tokenizer=tokenizer)
|
22 |
+
sen_model.load_state_dict(torch.load(sen_model_file, map_location=torch.device('cpu')))
|
23 |
|
24 |
entity_model = Classifier(base_model, num_labels=2, device='cpu', tokenizer=tokenizer)
|
25 |
+
entity_model.load_state_dict(torch.load(entity_model_file, map_location=torch.device('cpu')))
|
26 |
|
27 |
|
28 |
def infer(test_sentence):
|
|
|
45 |
|
46 |
tokenized_data = tokenizer(form_, pair_, padding='max_length', max_length=512, truncation=True)
|
47 |
|
48 |
+
input_ids = torch.tensor([tokenized_data['input_ids']])
|
49 |
+
attention_mask = torch.tensor([tokenized_data['attention_mask']])
|
50 |
|
51 |
first_sep = tokenized_data['input_ids'].index(2)
|
52 |
last_sep = tokenized_data['input_ids'][first_sep+2:].index(2) + (first_sep + 2)
|
53 |
mask = [0] * len(tokenized_data['input_ids'])
|
54 |
for i in range(first_sep + 2, last_sep):
|
55 |
mask[i] = 1
|
56 |
+
mask = torch.tensor([mask])
|
57 |
|
58 |
with torch.no_grad():
|
59 |
outputs = entity_model(input_ids, attention_mask, mask)
|