|
import cv2 |
|
import numpy as np |
|
from ultralytics import YOLO |
|
from ultralytics.yolo.utils.ops import scale_image |
|
import random |
|
import torch |
|
|
|
class ImageSegmenter: |
|
def __init__(self, model_type="yolov8s-seg") -> None: |
|
|
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
self.model = YOLO('models/'+ model_type +'.pt') |
|
self.model.to(self.device) |
|
|
|
self.is_show_bounding_boxes = True |
|
self.is_show_segmentation_boundary = False |
|
self.is_show_segmentation = False |
|
self.confidence_threshold = 0.5 |
|
self.cls_clr = {} |
|
|
|
|
|
self.bb_thickness = 2 |
|
self.bb_clr = (255, 0, 0) |
|
|
|
|
|
self.masks = {} |
|
|
|
|
|
def get_cls_clr(self, cls_id): |
|
if cls_id in self.cls_clr: |
|
return self.cls_clr[cls_id] |
|
|
|
|
|
r = random.randint(50, 200) |
|
g = random.randint(50, 200) |
|
b = random.randint(50, 200) |
|
self.cls_clr[cls_id] = (r, g, b) |
|
return (r, g, b) |
|
|
|
def predict(self, image): |
|
|
|
objects_data = [] |
|
image = image.copy() |
|
predictions = self.model.predict(image) |
|
|
|
cls_ids = predictions[0].boxes.cls.cpu().numpy() |
|
bounding_boxes = predictions[0].boxes.xyxy.int().cpu().numpy() |
|
cls_conf = predictions[0].boxes.conf.cpu().numpy() |
|
|
|
if predictions[0].masks: |
|
seg_mask_boundary = predictions[0].masks.xy |
|
seg_mask = predictions[0].masks.data.cpu().numpy() |
|
else: |
|
seg_mask_boundary, seg_mask = [], np.array([]) |
|
|
|
for id, cls in enumerate(cls_ids): |
|
cls_clr = self.get_cls_clr(cls) |
|
|
|
|
|
if seg_mask.any() and cls_conf[id] > self.confidence_threshold: |
|
|
|
self.masks[id] = seg_mask[id] |
|
|
|
if self.is_show_segmentation: |
|
alpha = 0.8 |
|
|
|
|
|
colored_mask = np.expand_dims(seg_mask[id], 0).repeat(3, axis=0) |
|
colored_mask = np.moveaxis(colored_mask, 0, -1) |
|
|
|
|
|
if image.shape[:2] != seg_mask[id].shape[:2]: |
|
colored_mask = cv2.resize(colored_mask, (image.shape[1], image.shape[0])) |
|
|
|
|
|
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=cls_clr) |
|
image_overlay = masked.filled() |
|
image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0) |
|
|
|
|
|
if self.is_show_bounding_boxes and cls_conf[id] > self.confidence_threshold: |
|
(x1, y1, x2, y2) = bounding_boxes[id] |
|
cls_name = self.model.names[cls] |
|
cls_confidence = cls_conf[id] |
|
disp_str = cls_name +' '+ str(round(cls_confidence, 2)) |
|
cv2.rectangle(image, (x1, y1), (x2, y2), cls_clr, self.bb_thickness) |
|
cv2.rectangle(image, (x1, y1), (x1+(len(disp_str)*9), y1+15), cls_clr, -1) |
|
cv2.putText(image, disp_str, (x1+5, y1+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) |
|
|
|
|
|
|
|
if len(seg_mask_boundary) and self.is_show_segmentation_boundary and cls_conf[id] > self.confidence_threshold: |
|
cv2.polylines(image, [np.array(seg_mask_boundary[id], dtype=np.int32)], isClosed=True, color=cls_clr, thickness=2) |
|
|
|
|
|
|
|
(x1, y1, x2, y2) = bounding_boxes[id] |
|
center = x1+(x2-x1)//2, y1+(y2-y1)//2 |
|
objects_data.append([cls, self.model.names[cls], center, self.masks[id], cls_clr]) |
|
|
|
return image, objects_data |
|
|
|
|
|
|
|
|