import cv2 | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import open3d as o3d | |
import plotly.graph_objects as go | |
# print(pcd) | |
# skip = 100 # Skip every n points | |
# fig = plt.figure() | |
# ax = fig.add_subplot(111, projection='3d') | |
# point_range = range(0, pcd.shape[0], skip) # skip points to prevent crash | |
# ax.scatter(pcd[point_range, 0], # x | |
# pcd[point_range, 1], # y | |
# pcd[point_range, 2], # z | |
# c=pcd[point_range, 2], # height data for color | |
# cmap='spectral', | |
# marker="x") | |
# ax.axis('scaled') # {equal, scaled} | |
# plt.show() | |
# pcd_o3d = o3d.geometry.PointCloud() # create point cloud object | |
# pcd_o3d.points = o3d.utility.Vector3dVector(pcd) # set pcd_np as the point cloud points | |
# # Visualize: | |
# o3d.visualization.draw_geometries([pcd_o3d]) | |
class PointCloudGenerator: | |
def __init__(self): | |
# Depth camera parameters: | |
self.fx_depth = 5.8262448167737955e+02 | |
self.fy_depth = 5.8269103270988637e+02 | |
self.cx_depth = 3.1304475870804731e+02 | |
self.cy_depth = 2.3844389626620386e+02 | |
def conver_to_point_cloud_v1(self, depth_img): | |
pcd = [] | |
height, width = depth_img.shape | |
for i in range(height): | |
for j in range(width): | |
z = depth_img[i][j] | |
x = (j - self.cx_depth) * z / self.fx_depth | |
y = (i - self.cy_depth) * z / self.fy_depth | |
pcd.append([x, y, z]) | |
return pcd | |
def conver_to_point_cloud(self, depth_img): | |
# get depth resolution: | |
height, width = depth_img.shape | |
length = height * width | |
# compute indices: | |
jj = np.tile(range(width), height) | |
ii = np.repeat(range(height), width) | |
# rechape depth image | |
z = depth_img.reshape(length) | |
# compute pcd: | |
pcd = np.dstack([(ii - self.cx_depth) * z / self.fx_depth, | |
(jj - self.cy_depth) * z / self.fy_depth, | |
z]).reshape((length, 3)) | |
return pcd | |
def generate_point_cloud(self, depth_img, normalize=False): | |
depth_img = np.array(depth_img) | |
if normalize: | |
# normalizing depth image | |
depth_min = depth_img.min() | |
depth_max = depth_img.max() | |
normalized_depth = 255 * ((depth_img - depth_min) / (depth_max - depth_min)) | |
depth_img = normalized_depth | |
# convert depth to point cloud | |
# point_cloud = self.conver_to_point_cloud(depth_img) | |
# depth_image = o3d.geometry.Image(depth_img) | |
depth_image = o3d.geometry.Image(np.ascontiguousarray(depth_img)) | |
# # Create open3d camera intrinsic object | |
# intrinsic_matrix = np.array([[self.fx_depth, 0, self.cx_depth], [0, self.fy_depth, self.cy_depth], [0, 0, 1]]) | |
# camera_intrinsic = o3d.camera.PinholeCameraIntrinsic() | |
# # camera_intrinsic.intrinsic_matrix = intrinsic_matrix | |
# camera_intrinsic.set_intrinsics(640, 480, self.fx_depth, self.fy_depth, self.cx_depth, self.cy_depth) | |
# camera settings | |
# camera_intrinsic = o3d.camera.PinholeCameraIntrinsic( | |
# depth_img.shape[0], depth_img.shape[1], 500, 500, depth_img.shape[0] / 2, depth_img.shape[1] / 2 | |
# ) | |
# Create open3d point cloud from depth image | |
point_cloud = o3d.geometry.PointCloud.create_from_depth_image(depth_image, | |
o3d.camera.PinholeCameraIntrinsic( o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault)) | |
return point_cloud | |
# def display_pcd(pcd_data, use_matplotlib=True): | |
# if use_matplotlib: | |
# fig = plt.figure() | |
# ax = fig.add_subplot(111, projection='3d') | |
# for data, clr in pcd_data: | |
# # points = np.array(data) | |
# points = np.asarray(data.points) | |
# skip = 5 | |
# point_range = range(0, points.shape[0], skip) # skip points to prevent crash | |
# if use_matplotlib: | |
# ax.scatter(points[point_range, 0], points[point_range, 1], points[point_range, 2]*100, c=list(clr).append(1), marker='o') | |
# # if not use_matplotlib: | |
# # pcd_o3d = o3d.geometry.PointCloud() # create point cloud object | |
# # pcd_o3d.points = o3d.utility.Vector3dVector(points) # set pcd_np as the point cloud points | |
# # # Visualize: | |
# # o3d.visualization.draw_geometries([pcd_o3d]) | |
# if use_matplotlib: | |
# ax.set_xlabel('X Label') | |
# ax.set_ylabel('Y Label') | |
# ax.set_zlabel('Z Label') | |
# ax.view_init(elev=-90, azim=0, roll=-90) | |
# # plt.show() | |
# return fig | |
# if not use_matplotlib: | |
# o3d.visualization.draw_geometries([pcd_o3d]) | |
def display_pcd(pcd_data): | |
fig = go.Figure() | |
for data, clr in pcd_data: | |
points = np.asarray(data.points) | |
skip = 1 | |
point_range = range(0, points.shape[0], skip) | |
fig.add_trace(go.Scatter3d( | |
x=points[point_range, 0], | |
y=points[point_range, 1], | |
z=points[point_range, 2]*100, | |
mode='markers', | |
marker=dict( | |
size=1, | |
color='rgb'+str(clr), | |
opacity=1 | |
) | |
)) | |
fig.update_layout( | |
scene=dict( | |
xaxis_title='X Label', | |
yaxis_title='Y Label', | |
zaxis_title='Z Label', | |
camera=dict( | |
eye=dict(x=0, y=0, z=-1), | |
# up=dict(x=0, y=0, z=1), | |
) | |
) | |
) | |
return fig | |
if __name__ == "__main__": | |
depth_img_path = "assets/images/depth_map_p1.png" | |
depth_img = cv2.imread(depth_img_path, 0) | |
depth_img = depth_img/255 | |
point_cloud_gen = PointCloudGenerator() | |
pcd = point_cloud_gen.generate_point_cloud(depth_img) | |
display_pcd([pcd], use_matplotlib=True) | |