|
import timm |
|
import torch |
|
import types |
|
|
|
import numpy as np |
|
import torch.nn.functional as F |
|
|
|
from .utils import forward_adapted_unflatten, make_backbone_default |
|
from timm.models.beit import gen_relative_position_index |
|
from torch.utils.checkpoint import checkpoint |
|
from typing import Optional |
|
|
|
|
|
def forward_beit(pretrained, x): |
|
return forward_adapted_unflatten(pretrained, x, "forward_features") |
|
|
|
|
|
def patch_embed_forward(self, x): |
|
""" |
|
Modification of timm.models.layers.patch_embed.py: PatchEmbed.forward to support arbitrary window sizes. |
|
""" |
|
x = self.proj(x) |
|
if self.flatten: |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
def _get_rel_pos_bias(self, window_size): |
|
""" |
|
Modification of timm.models.beit.py: Attention._get_rel_pos_bias to support arbitrary window sizes. |
|
""" |
|
old_height = 2 * self.window_size[0] - 1 |
|
old_width = 2 * self.window_size[1] - 1 |
|
|
|
new_height = 2 * window_size[0] - 1 |
|
new_width = 2 * window_size[1] - 1 |
|
|
|
old_relative_position_bias_table = self.relative_position_bias_table |
|
|
|
old_num_relative_distance = self.num_relative_distance |
|
new_num_relative_distance = new_height * new_width + 3 |
|
|
|
old_sub_table = old_relative_position_bias_table[:old_num_relative_distance - 3] |
|
|
|
old_sub_table = old_sub_table.reshape(1, old_width, old_height, -1).permute(0, 3, 1, 2) |
|
new_sub_table = F.interpolate(old_sub_table, size=(new_height, new_width), mode="bilinear") |
|
new_sub_table = new_sub_table.permute(0, 2, 3, 1).reshape(new_num_relative_distance - 3, -1) |
|
|
|
new_relative_position_bias_table = torch.cat( |
|
[new_sub_table, old_relative_position_bias_table[old_num_relative_distance - 3:]]) |
|
|
|
key = str(window_size[1]) + "," + str(window_size[0]) |
|
if key not in self.relative_position_indices.keys(): |
|
self.relative_position_indices[key] = gen_relative_position_index(window_size) |
|
|
|
relative_position_bias = new_relative_position_bias_table[ |
|
self.relative_position_indices[key].view(-1)].view( |
|
window_size[0] * window_size[1] + 1, |
|
window_size[0] * window_size[1] + 1, -1) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
return relative_position_bias.unsqueeze(0) |
|
|
|
|
|
def attention_forward(self, x, resolution, shared_rel_pos_bias: Optional[torch.Tensor] = None): |
|
""" |
|
Modification of timm.models.beit.py: Attention.forward to support arbitrary window sizes. |
|
""" |
|
B, N, C = x.shape |
|
|
|
qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) if self.q_bias is not None else None |
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv.unbind(0) |
|
|
|
q = q * self.scale |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
if self.relative_position_bias_table is not None: |
|
window_size = tuple(np.array(resolution) // 16) |
|
attn = attn + self._get_rel_pos_bias(window_size) |
|
if shared_rel_pos_bias is not None: |
|
attn = attn + shared_rel_pos_bias |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
def block_forward(self, x, resolution, shared_rel_pos_bias: Optional[torch.Tensor] = None): |
|
""" |
|
Modification of timm.models.beit.py: Block.forward to support arbitrary window sizes. |
|
""" |
|
if self.gamma_1 is None: |
|
x = x + self.drop_path(self.attn(self.norm1(x), resolution, shared_rel_pos_bias=shared_rel_pos_bias)) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
else: |
|
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), resolution, |
|
shared_rel_pos_bias=shared_rel_pos_bias)) |
|
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
def beit_forward_features(self, x): |
|
""" |
|
Modification of timm.models.beit.py: Beit.forward_features to support arbitrary window sizes. |
|
""" |
|
resolution = x.shape[2:] |
|
|
|
x = self.patch_embed(x) |
|
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) |
|
if self.pos_embed is not None: |
|
x = x + self.pos_embed |
|
x = self.pos_drop(x) |
|
|
|
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None |
|
for blk in self.blocks: |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint(blk, x, shared_rel_pos_bias=rel_pos_bias) |
|
else: |
|
x = blk(x, resolution, shared_rel_pos_bias=rel_pos_bias) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
def _make_beit_backbone( |
|
model, |
|
features=[96, 192, 384, 768], |
|
size=[384, 384], |
|
hooks=[0, 4, 8, 11], |
|
vit_features=768, |
|
use_readout="ignore", |
|
start_index=1, |
|
start_index_readout=1, |
|
): |
|
backbone = make_backbone_default(model, features, size, hooks, vit_features, use_readout, start_index, |
|
start_index_readout) |
|
|
|
backbone.model.patch_embed.forward = types.MethodType(patch_embed_forward, backbone.model.patch_embed) |
|
backbone.model.forward_features = types.MethodType(beit_forward_features, backbone.model) |
|
|
|
for block in backbone.model.blocks: |
|
attn = block.attn |
|
attn._get_rel_pos_bias = types.MethodType(_get_rel_pos_bias, attn) |
|
attn.forward = types.MethodType(attention_forward, attn) |
|
attn.relative_position_indices = {} |
|
|
|
block.forward = types.MethodType(block_forward, block) |
|
|
|
return backbone |
|
|
|
|
|
def _make_pretrained_beitl16_512(pretrained, use_readout="ignore", hooks=None): |
|
model = timm.create_model("beit_large_patch16_512", pretrained=pretrained) |
|
|
|
hooks = [5, 11, 17, 23] if hooks is None else hooks |
|
|
|
features = [256, 512, 1024, 1024] |
|
|
|
return _make_beit_backbone( |
|
model, |
|
features=features, |
|
size=[512, 512], |
|
hooks=hooks, |
|
vit_features=1024, |
|
use_readout=use_readout, |
|
) |
|
|
|
|
|
def _make_pretrained_beitl16_384(pretrained, use_readout="ignore", hooks=None): |
|
model = timm.create_model("beit_large_patch16_384", pretrained=pretrained) |
|
|
|
hooks = [5, 11, 17, 23] if hooks is None else hooks |
|
return _make_beit_backbone( |
|
model, |
|
features=[256, 512, 1024, 1024], |
|
hooks=hooks, |
|
vit_features=1024, |
|
use_readout=use_readout, |
|
) |
|
|
|
|
|
def _make_pretrained_beitb16_384(pretrained, use_readout="ignore", hooks=None): |
|
model = timm.create_model("beit_base_patch16_384", pretrained=pretrained) |
|
|
|
hooks = [2, 5, 8, 11] if hooks is None else hooks |
|
return _make_beit_backbone( |
|
model, |
|
features=[96, 192, 384, 768], |
|
hooks=hooks, |
|
use_readout=use_readout, |
|
) |
|
|