magicanimat / magicanimate /pipelines /pipeline_animation.py
zcxu-eric's picture
add app
8aa9c9a
raw
history blame
36.3 kB
# *************************************************************************
# This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
# difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B-
# ytedance Inc..
# *************************************************************************
# Adapted from https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/pipelines/pipeline_tuneavideo.py
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
TODO:
1. support multi-controlnet
2. [DONE] support DDIM inversion
3. support Prompt-to-prompt
"""
import inspect, math
from typing import Callable, List, Optional, Union
from dataclasses import dataclass
from PIL import Image
import numpy as np
import torch
import torch.distributed as dist
from tqdm import tqdm
from diffusers.utils import is_accelerate_available
from packaging import version
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.utils import deprecate, logging, BaseOutput
from einops import rearrange
from magicanimate.models.unet_controlnet import UNet3DConditionModel
from magicanimate.models.controlnet import ControlNetModel
from magicanimate.models.mutual_self_attention import ReferenceAttentionControl
from magicanimate.pipelines.context import (
get_context_scheduler,
get_total_steps
)
from magicanimate.utils.util import get_tensor_interpolation_method
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class AnimationPipelineOutput(BaseOutput):
videos: Union[torch.Tensor, np.ndarray]
class AnimationPipeline(DiffusionPipeline):
_optional_components = []
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet3DConditionModel,
controlnet: ControlNetModel,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
],
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
controlnet=controlnet,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
def enable_vae_slicing(self):
self.vae.enable_slicing()
def disable_vae_slicing(self):
self.vae.disable_slicing()
def enable_sequential_cpu_offload(self, gpu_id=0):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
def _execution_device(self):
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt):
batch_size = len(prompt) if isinstance(prompt, list) else 1
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
text_embeddings = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
text_embeddings = text_embeddings[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
uncond_embeddings = uncond_embeddings[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
def decode_latents(self, latents, rank, decoder_consistency=None):
video_length = latents.shape[2]
latents = 1 / 0.18215 * latents
latents = rearrange(latents, "b c f h w -> (b f) c h w")
# video = self.vae.decode(latents).sample
video = []
for frame_idx in tqdm(range(latents.shape[0]), disable=(rank!=0)):
if decoder_consistency is not None:
video.append(decoder_consistency(latents[frame_idx:frame_idx+1]))
else:
video.append(self.vae.decode(latents[frame_idx:frame_idx+1]).sample)
video = torch.cat(video)
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
video = (video / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
video = video.cpu().float().numpy()
return video
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(self, prompt, height, width, callback_steps):
if not isinstance(prompt, str) and not isinstance(prompt, list):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None, clip_length=16):
shape = (batch_size, num_channels_latents, clip_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
rand_device = "cpu" if device.type == "mps" else device
if isinstance(generator, list):
latents = [
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
for i in range(batch_size)
]
latents = torch.cat(latents, dim=0).to(device)
else:
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
latents = latents.repeat(1, 1, video_length//clip_length, 1, 1)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def prepare_condition(self, condition, num_videos_per_prompt, device, dtype, do_classifier_free_guidance):
# prepare conditions for controlnet
condition = torch.from_numpy(condition.copy()).to(device=device, dtype=dtype) / 255.0
condition = torch.stack([condition for _ in range(num_videos_per_prompt)], dim=0)
condition = rearrange(condition, 'b f h w c -> (b f) c h w').clone()
if do_classifier_free_guidance:
condition = torch.cat([condition] * 2)
return condition
def next_step(
self,
model_output: torch.FloatTensor,
timestep: int,
x: torch.FloatTensor,
eta=0.,
verbose=False
):
"""
Inverse sampling for DDIM Inversion
"""
if verbose:
print("timestep: ", timestep)
next_step = timestep
timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999)
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_step]
beta_prod_t = 1 - alpha_prod_t
pred_x0 = (x - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5
pred_dir = (1 - alpha_prod_t_next)**0.5 * model_output
x_next = alpha_prod_t_next**0.5 * pred_x0 + pred_dir
return x_next, pred_x0
@torch.no_grad()
def images2latents(self, images, dtype):
"""
Convert RGB image to VAE latents
"""
device = self._execution_device
images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1
images = rearrange(images, "f h w c -> f c h w").to(device)
latents = []
for frame_idx in range(images.shape[0]):
latents.append(self.vae.encode(images[frame_idx:frame_idx+1])['latent_dist'].mean * 0.18215)
latents = torch.cat(latents)
return latents
@torch.no_grad()
def invert(
self,
image: torch.Tensor,
prompt,
num_inference_steps=20,
num_actual_inference_steps=10,
eta=0.0,
return_intermediates=False,
**kwargs):
"""
Adapted from: https://github.com/Yujun-Shi/DragDiffusion/blob/main/drag_pipeline.py#L440
invert a real image into noise map with determinisc DDIM inversion
"""
device = self._execution_device
batch_size = image.shape[0]
if isinstance(prompt, list):
if batch_size == 1:
image = image.expand(len(prompt), -1, -1, -1)
elif isinstance(prompt, str):
if batch_size > 1:
prompt = [prompt] * batch_size
# text embeddings
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=77,
return_tensors="pt"
)
text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
print("input text embeddings :", text_embeddings.shape)
# define initial latents
latents = self.images2latents(image)
print("latents shape: ", latents.shape)
# interative sampling
self.scheduler.set_timesteps(num_inference_steps)
print("Valid timesteps: ", reversed(self.scheduler.timesteps))
latents_list = [latents]
pred_x0_list = [latents]
for i, t in enumerate(tqdm(reversed(self.scheduler.timesteps), desc="DDIM Inversion")):
if num_actual_inference_steps is not None and i >= num_actual_inference_steps:
continue
model_inputs = latents
# predict the noise
# NOTE: the u-net here is UNet3D, therefore the model_inputs need to be of shape (b c f h w)
model_inputs = rearrange(model_inputs, "f c h w -> 1 c f h w")
noise_pred = self.unet(model_inputs, t, encoder_hidden_states=text_embeddings).sample
noise_pred = rearrange(noise_pred, "b c f h w -> (b f) c h w")
# compute the previous noise sample x_t-1 -> x_t
latents, pred_x0 = self.next_step(noise_pred, t, latents)
latents_list.append(latents)
pred_x0_list.append(pred_x0)
if return_intermediates:
# return the intermediate laters during inversion
return latents, latents_list
return latents
def interpolate_latents(self, latents: torch.Tensor, interpolation_factor:int, device ):
if interpolation_factor < 2:
return latents
new_latents = torch.zeros(
(latents.shape[0],latents.shape[1],((latents.shape[2]-1) * interpolation_factor)+1, latents.shape[3],latents.shape[4]),
device=latents.device,
dtype=latents.dtype,
)
org_video_length = latents.shape[2]
rate = [i/interpolation_factor for i in range(interpolation_factor)][1:]
new_index = 0
v0 = None
v1 = None
for i0,i1 in zip( range( org_video_length ),range( org_video_length )[1:] ):
v0 = latents[:,:,i0,:,:]
v1 = latents[:,:,i1,:,:]
new_latents[:,:,new_index,:,:] = v0
new_index += 1
for f in rate:
v = get_tensor_interpolation_method()(v0.to(device=device),v1.to(device=device),f)
new_latents[:,:,new_index,:,:] = v.to(latents.device)
new_index += 1
new_latents[:,:,new_index,:,:] = v1
new_index += 1
return new_latents
def select_controlnet_res_samples(self, controlnet_res_samples_cache_dict, context, do_classifier_free_guidance, b, f):
_down_block_res_samples = []
_mid_block_res_sample = []
for i in np.concatenate(np.array(context)):
_down_block_res_samples.append(controlnet_res_samples_cache_dict[i][0])
_mid_block_res_sample.append(controlnet_res_samples_cache_dict[i][1])
down_block_res_samples = [[] for _ in range(len(controlnet_res_samples_cache_dict[i][0]))]
for res_t in _down_block_res_samples:
for i, res in enumerate(res_t):
down_block_res_samples[i].append(res)
down_block_res_samples = [torch.cat(res) for res in down_block_res_samples]
mid_block_res_sample = torch.cat(_mid_block_res_sample)
# reshape controlnet output to match the unet3d inputs
b = b // 2 if do_classifier_free_guidance else b
_down_block_res_samples = []
for sample in down_block_res_samples:
sample = rearrange(sample, '(b f) c h w -> b c f h w', b=b, f=f)
if do_classifier_free_guidance:
sample = sample.repeat(2, 1, 1, 1, 1)
_down_block_res_samples.append(sample)
down_block_res_samples = _down_block_res_samples
mid_block_res_sample = rearrange(mid_block_res_sample, '(b f) c h w -> b c f h w', b=b, f=f)
if do_classifier_free_guidance:
mid_block_res_sample = mid_block_res_sample.repeat(2, 1, 1, 1, 1)
return down_block_res_samples, mid_block_res_sample
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
video_length: Optional[int],
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_videos_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "tensor",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
controlnet_condition: list = None,
controlnet_conditioning_scale: float = 1.0,
context_frames: int = 16,
context_stride: int = 1,
context_overlap: int = 4,
context_batch_size: int = 1,
context_schedule: str = "uniform",
init_latents: Optional[torch.FloatTensor] = None,
num_actual_inference_steps: Optional[int] = None,
appearance_encoder = None,
reference_control_writer = None,
reference_control_reader = None,
source_image: str = None,
decoder_consistency = None,
**kwargs,
):
"""
New args:
- controlnet_condition : condition map (e.g., depth, canny, keypoints) for controlnet
- controlnet_conditioning_scale : conditioning scale for controlnet
- init_latents : initial latents to begin with (used along with invert())
- num_actual_inference_steps : number of actual inference steps (while total steps is num_inference_steps)
"""
controlnet = self.controlnet
# Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, callback_steps)
# Define call parameters
# batch_size = 1 if isinstance(prompt, str) else len(prompt)
batch_size = 1
if latents is not None:
batch_size = latents.shape[0]
if isinstance(prompt, list):
batch_size = len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# Encode input prompt
prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size
if negative_prompt is not None:
negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size
text_embeddings = self._encode_prompt(
prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
)
text_embeddings = torch.cat([text_embeddings] * context_batch_size)
reference_control_writer = ReferenceAttentionControl(appearance_encoder, do_classifier_free_guidance=True, mode='write', batch_size=context_batch_size)
reference_control_reader = ReferenceAttentionControl(self.unet, do_classifier_free_guidance=True, mode='read', batch_size=context_batch_size)
is_dist_initialized = kwargs.get("dist", False)
rank = kwargs.get("rank", 0)
world_size = kwargs.get("world_size", 1)
# Prepare video
assert num_videos_per_prompt == 1 # FIXME: verify if num_videos_per_prompt > 1 works
assert batch_size == 1 # FIXME: verify if batch_size > 1 works
control = self.prepare_condition(
condition=controlnet_condition,
device=device,
dtype=controlnet.dtype,
num_videos_per_prompt=num_videos_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
)
controlnet_uncond_images, controlnet_cond_images = control.chunk(2)
# Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# Prepare latent variables
if init_latents is not None:
latents = rearrange(init_latents, "(b f) c h w -> b c f h w", f=video_length)
else:
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
video_length,
height,
width,
text_embeddings.dtype,
device,
generator,
latents,
)
latents_dtype = latents.dtype
# Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# Prepare text embeddings for controlnet
controlnet_text_embeddings = text_embeddings.repeat_interleave(video_length, 0)
_, controlnet_text_embeddings_c = controlnet_text_embeddings.chunk(2)
controlnet_res_samples_cache_dict = {i:None for i in range(video_length)}
# For img2img setting
if num_actual_inference_steps is None:
num_actual_inference_steps = num_inference_steps
if isinstance(source_image, str):
ref_image_latents = self.images2latents(np.array(Image.open(source_image).resize((width, height)))[None, :], latents_dtype).cuda()
elif isinstance(source_image, np.ndarray):
ref_image_latents = self.images2latents(source_image[None, :], latents_dtype).cuda()
context_scheduler = get_context_scheduler(context_schedule)
# Denoising loop
for i, t in tqdm(enumerate(timesteps), total=len(timesteps), disable=(rank!=0)):
if num_actual_inference_steps is not None and i < num_inference_steps - num_actual_inference_steps:
continue
noise_pred = torch.zeros(
(latents.shape[0] * (2 if do_classifier_free_guidance else 1), *latents.shape[1:]),
device=latents.device,
dtype=latents.dtype,
)
counter = torch.zeros(
(1, 1, latents.shape[2], 1, 1), device=latents.device, dtype=latents.dtype
)
appearance_encoder(
ref_image_latents.repeat(context_batch_size * (2 if do_classifier_free_guidance else 1), 1, 1, 1),
t,
encoder_hidden_states=text_embeddings,
return_dict=False,
)
context_queue = list(context_scheduler(
0, num_inference_steps, latents.shape[2], context_frames, context_stride, 0
))
num_context_batches = math.ceil(len(context_queue) / context_batch_size)
for i in range(num_context_batches):
context = context_queue[i*context_batch_size: (i+1)*context_batch_size]
# expand the latents if we are doing classifier free guidance
controlnet_latent_input = (
torch.cat([latents[:, :, c] for c in context])
.to(device)
)
controlnet_latent_input = self.scheduler.scale_model_input(controlnet_latent_input, t)
# prepare inputs for controlnet
b, c, f, h, w = controlnet_latent_input.shape
controlnet_latent_input = rearrange(controlnet_latent_input, "b c f h w -> (b f) c h w")
# controlnet inference
down_block_res_samples, mid_block_res_sample = self.controlnet(
controlnet_latent_input,
t,
encoder_hidden_states=torch.cat([controlnet_text_embeddings_c[c] for c in context]),
controlnet_cond=torch.cat([controlnet_cond_images[c] for c in context]),
conditioning_scale=controlnet_conditioning_scale,
return_dict=False,
)
for j, k in enumerate(np.concatenate(np.array(context))):
controlnet_res_samples_cache_dict[k] = ([sample[j:j+1] for sample in down_block_res_samples], mid_block_res_sample[j:j+1])
context_queue = list(context_scheduler(
0, num_inference_steps, latents.shape[2], context_frames, context_stride, context_overlap
))
num_context_batches = math.ceil(len(context_queue) / context_batch_size)
global_context = []
for i in range(num_context_batches):
global_context.append(context_queue[i*context_batch_size: (i+1)*context_batch_size])
for context in global_context[rank::world_size]:
# expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents[:, :, c] for c in context])
.to(device)
.repeat(2 if do_classifier_free_guidance else 1, 1, 1, 1, 1)
)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
b, c, f, h, w = latent_model_input.shape
down_block_res_samples, mid_block_res_sample = self.select_controlnet_res_samples(
controlnet_res_samples_cache_dict,
context,
do_classifier_free_guidance,
b, f
)
reference_control_reader.update(reference_control_writer)
# predict the noise residual
pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=text_embeddings[:b],
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
return_dict=False,
)[0]
reference_control_reader.clear()
pred_uc, pred_c = pred.chunk(2)
pred = torch.cat([pred_uc.unsqueeze(0), pred_c.unsqueeze(0)])
for j, c in enumerate(context):
noise_pred[:, :, c] = noise_pred[:, :, c] + pred[:, j]
counter[:, :, c] = counter[:, :, c] + 1
if is_dist_initialized:
noise_pred_gathered = [torch.zeros_like(noise_pred) for _ in range(world_size)]
if rank == 0:
dist.gather(tensor=noise_pred, gather_list=noise_pred_gathered, dst=0)
else:
dist.gather(tensor=noise_pred, gather_list=[], dst=0)
dist.barrier()
if rank == 0:
for k in range(1, world_size):
for context in global_context[k::world_size]:
for j, c in enumerate(context):
noise_pred[:, :, c] = noise_pred[:, :, c] + noise_pred_gathered[k][:, :, c]
counter[:, :, c] = counter[:, :, c] + 1
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = (noise_pred / counter).chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
if is_dist_initialized:
dist.broadcast(latents, 0)
dist.barrier()
reference_control_writer.clear()
interpolation_factor = 1
latents = self.interpolate_latents(latents, interpolation_factor, device)
# Post-processing
video = self.decode_latents(latents, rank, decoder_consistency=decoder_consistency)
if is_dist_initialized:
dist.barrier()
# Convert to tensor
if output_type == "tensor":
video = torch.from_numpy(video)
if not return_dict:
return video
return AnimationPipelineOutput(videos=video)