Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,12 +4,12 @@ import pandas as pd
|
|
4 |
import re
|
5 |
import io
|
6 |
|
7 |
-
def extract_with_lines(
|
8 |
"""
|
9 |
Extract all PDF text, displaying page+line number prefix.
|
10 |
Returns raw text for training.
|
11 |
"""
|
12 |
-
with open(
|
13 |
reader = PyPDF2.PdfReader(f)
|
14 |
result = []
|
15 |
for i, page in enumerate(reader.pages):
|
@@ -40,89 +40,66 @@ def guess_extraction_regex(sample_value, all_lines):
|
|
40 |
Use the sample_value to build a simple extraction pattern.
|
41 |
If the value is after a colon or consistent header, match similar lines.
|
42 |
"""
|
43 |
-
# Try to extract prefix
|
44 |
for line in all_lines:
|
45 |
if sample_value in line:
|
46 |
-
# If the sample is after "Some Label: ", extract that
|
47 |
if ':' in line:
|
48 |
prefix, suffix = line.split(':', 1)
|
49 |
if sample_value.strip() == suffix.strip():
|
50 |
-
return re.compile(f"{re.escape(prefix.strip())}
|
51 |
-
|
52 |
-
match = re.match(r"(.*?)(\s+)?"+re.escape(sample_value)+r"(.*)?", line)
|
53 |
if match and match.group(1).strip():
|
54 |
-
|
55 |
-
return re.compile(f"{re.escape(match.group(1).strip())}\s*(.+)", re.IGNORECASE)
|
56 |
-
# Fallback: find lines that contain the sample and grab same structure
|
57 |
return None
|
58 |
|
59 |
def extract_table_from_sample(raw_text, label, sample_value):
|
60 |
-
# Split lines
|
61 |
lines = raw_text.splitlines()
|
62 |
if not label or not sample_value:
|
63 |
return pd.DataFrame([{"Error": "Please supply both label and sample value!"}])
|
64 |
-
|
65 |
-
# Try to pattern match (e.g. "Customer Name: Ramesh Kumar")
|
66 |
regex = guess_extraction_regex(sample_value, lines)
|
67 |
found = []
|
68 |
-
|
69 |
if regex:
|
70 |
for line in lines:
|
71 |
m = regex.match(line)
|
72 |
if m:
|
73 |
found.append({label: m.group(1).strip()})
|
74 |
else:
|
75 |
-
# Fallback, just grab lines that contain the sample's prefix
|
76 |
-
# Try to find all lines which have the non-digit prefix of this sample
|
77 |
prefix = sample_value[:5]
|
78 |
for line in lines:
|
79 |
if prefix in line:
|
80 |
found.append({label: line.strip()})
|
81 |
-
|
82 |
if not found:
|
83 |
return pd.DataFrame([{"Error": f"No matches found for sample: {sample_value}"}])
|
84 |
return pd.DataFrame(found)
|
85 |
|
86 |
def export_xlsx(df):
|
87 |
-
"""Export pandas df to xlsx in-memory file"""
|
88 |
buf = io.BytesIO()
|
89 |
with pd.ExcelWriter(buf, engine="xlsxwriter") as writer:
|
90 |
df.to_excel(writer, index=False)
|
91 |
buf.seek(0)
|
92 |
return buf
|
93 |
|
94 |
-
### Gradio Interface
|
95 |
-
|
96 |
with gr.Blocks() as demo:
|
97 |
gr.Markdown("# π§βπ« PDF Teach-&-Extract System\n**1. Upload PDF β 2. Teach a sample field β 3. Preview all auto-extracted matches β 4. Download as Excel**")
|
98 |
-
|
99 |
-
file_in = gr.File(label="Upload your PDF", file_count="single", type="file")
|
100 |
raw_text = gr.Textbox(label="Raw extracted PDF text (preview/copy here)", lines=18, show_copy_button=True)
|
101 |
-
|
102 |
file_in.change(extract_with_lines, inputs=file_in, outputs=raw_text)
|
103 |
-
|
104 |
with gr.Row():
|
105 |
teach_label = gr.Textbox(label="Your Desired Field Name (e.g. Customer Name)")
|
106 |
teach_sample = gr.Textbox(label="Example Value (copy-paste from above)")
|
107 |
teach_search = gr.Button("Show Context")
|
108 |
context_out = gr.Textbox(label="System shows the found context(s)", lines=4)
|
109 |
-
|
110 |
teach_search.click(get_sample_context, inputs=[raw_text, teach_sample], outputs=context_out)
|
111 |
-
|
112 |
with gr.Row():
|
113 |
extract_btn = gr.Button("Extract All Similar Values")
|
114 |
results_table = gr.Dataframe(label="Extracted Results Table")
|
115 |
download_btn = gr.Button("Download as Excel")
|
116 |
xlsx_file = gr.File(label="Excel Download (.xlsx)", visible=True)
|
117 |
-
|
118 |
def extract_and_preview(raw_text, teach_label, teach_sample):
|
119 |
df = extract_table_from_sample(raw_text, teach_label, teach_sample)
|
120 |
return df
|
121 |
extract_btn.click(extract_and_preview, inputs=[raw_text, teach_label, teach_sample], outputs=results_table)
|
122 |
-
|
123 |
def save_xlsx(df):
|
124 |
buf = export_xlsx(df)
|
125 |
return ("results.xlsx", buf)
|
126 |
download_btn.click(save_xlsx, inputs=results_table, outputs=xlsx_file)
|
127 |
-
|
128 |
demo.launch()
|
|
|
4 |
import re
|
5 |
import io
|
6 |
|
7 |
+
def extract_with_lines(pdf_path):
|
8 |
"""
|
9 |
Extract all PDF text, displaying page+line number prefix.
|
10 |
Returns raw text for training.
|
11 |
"""
|
12 |
+
with open(pdf_path, "rb") as f:
|
13 |
reader = PyPDF2.PdfReader(f)
|
14 |
result = []
|
15 |
for i, page in enumerate(reader.pages):
|
|
|
40 |
Use the sample_value to build a simple extraction pattern.
|
41 |
If the value is after a colon or consistent header, match similar lines.
|
42 |
"""
|
|
|
43 |
for line in all_lines:
|
44 |
if sample_value in line:
|
|
|
45 |
if ':' in line:
|
46 |
prefix, suffix = line.split(':', 1)
|
47 |
if sample_value.strip() == suffix.strip():
|
48 |
+
return re.compile(f"{re.escape(prefix.strip())}\\s*:\\s*(.+)", re.IGNORECASE)
|
49 |
+
match = re.match(r"(.*?)(\\s+)?"+re.escape(sample_value)+r"(.*)?", line)
|
|
|
50 |
if match and match.group(1).strip():
|
51 |
+
return re.compile(f"{re.escape(match.group(1).strip())}\\s*(.+)", re.IGNORECASE)
|
|
|
|
|
52 |
return None
|
53 |
|
54 |
def extract_table_from_sample(raw_text, label, sample_value):
|
|
|
55 |
lines = raw_text.splitlines()
|
56 |
if not label or not sample_value:
|
57 |
return pd.DataFrame([{"Error": "Please supply both label and sample value!"}])
|
|
|
|
|
58 |
regex = guess_extraction_regex(sample_value, lines)
|
59 |
found = []
|
|
|
60 |
if regex:
|
61 |
for line in lines:
|
62 |
m = regex.match(line)
|
63 |
if m:
|
64 |
found.append({label: m.group(1).strip()})
|
65 |
else:
|
|
|
|
|
66 |
prefix = sample_value[:5]
|
67 |
for line in lines:
|
68 |
if prefix in line:
|
69 |
found.append({label: line.strip()})
|
|
|
70 |
if not found:
|
71 |
return pd.DataFrame([{"Error": f"No matches found for sample: {sample_value}"}])
|
72 |
return pd.DataFrame(found)
|
73 |
|
74 |
def export_xlsx(df):
|
|
|
75 |
buf = io.BytesIO()
|
76 |
with pd.ExcelWriter(buf, engine="xlsxwriter") as writer:
|
77 |
df.to_excel(writer, index=False)
|
78 |
buf.seek(0)
|
79 |
return buf
|
80 |
|
|
|
|
|
81 |
with gr.Blocks() as demo:
|
82 |
gr.Markdown("# π§βπ« PDF Teach-&-Extract System\n**1. Upload PDF β 2. Teach a sample field β 3. Preview all auto-extracted matches β 4. Download as Excel**")
|
83 |
+
file_in = gr.File(label="Upload your PDF", file_count="single", type="filepath")
|
|
|
84 |
raw_text = gr.Textbox(label="Raw extracted PDF text (preview/copy here)", lines=18, show_copy_button=True)
|
|
|
85 |
file_in.change(extract_with_lines, inputs=file_in, outputs=raw_text)
|
|
|
86 |
with gr.Row():
|
87 |
teach_label = gr.Textbox(label="Your Desired Field Name (e.g. Customer Name)")
|
88 |
teach_sample = gr.Textbox(label="Example Value (copy-paste from above)")
|
89 |
teach_search = gr.Button("Show Context")
|
90 |
context_out = gr.Textbox(label="System shows the found context(s)", lines=4)
|
|
|
91 |
teach_search.click(get_sample_context, inputs=[raw_text, teach_sample], outputs=context_out)
|
|
|
92 |
with gr.Row():
|
93 |
extract_btn = gr.Button("Extract All Similar Values")
|
94 |
results_table = gr.Dataframe(label="Extracted Results Table")
|
95 |
download_btn = gr.Button("Download as Excel")
|
96 |
xlsx_file = gr.File(label="Excel Download (.xlsx)", visible=True)
|
|
|
97 |
def extract_and_preview(raw_text, teach_label, teach_sample):
|
98 |
df = extract_table_from_sample(raw_text, teach_label, teach_sample)
|
99 |
return df
|
100 |
extract_btn.click(extract_and_preview, inputs=[raw_text, teach_label, teach_sample], outputs=results_table)
|
|
|
101 |
def save_xlsx(df):
|
102 |
buf = export_xlsx(df)
|
103 |
return ("results.xlsx", buf)
|
104 |
download_btn.click(save_xlsx, inputs=results_table, outputs=xlsx_file)
|
|
|
105 |
demo.launch()
|