Spaces:
Configuration error
Configuration error
| import os | |
| from dotenv import load_dotenv | |
| from langgraph.prebuilt import ToolNode, tools_condition | |
| from langchain_core.messages import SystemMessage, HumanMessage | |
| from langchain_community.document_loaders import WikipediaLoader, ArxivLoader | |
| from langchain_community.tools.tavily_search import TavilySearchResults | |
| from langchain.tools.retriever import create_retriever_tool | |
| from langchain_core.tools import tool | |
| from supabase.client import Client, create_client | |
| from langchain_community.vectorstores import SupabaseVectorStore | |
| from langchain_huggingface import ( | |
| ChatHuggingFace, | |
| HuggingFaceEndpoint, | |
| HuggingFaceEmbeddings, | |
| ) | |
| from langgraph.graph import START, StateGraph, MessagesState | |
| load_dotenv() | |
| def wikipedia_search(query: str) -> str: | |
| """Search Wikipedia for a query and return maximum 2 results | |
| Args: | |
| query: The search string | |
| """ | |
| docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
| all_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
| for doc in docs | |
| ] | |
| ) | |
| return {"wikipedia_results": all_search_docs} | |
| def web_search(query: str) -> str: | |
| """Search Tavily for a query and return maximum 3 results. | |
| Args: | |
| query: The search query.""" | |
| docs = TavilySearchResults(max_results=3).invoke(query=query) | |
| all_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
| for doc in docs | |
| ] | |
| ) | |
| return {"web_results": all_search_docs} | |
| def arvix_search(query: str) -> str: | |
| """Search Arxiv for a query and return maximum 3 result. | |
| Args: | |
| query: The search query.""" | |
| search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
| for doc in search_docs | |
| ] | |
| ) | |
| return {"arvix_results": formatted_search_docs} | |
| with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
| system_prompt = f.read() | |
| sys_msg = SystemMessage(system_prompt) | |
| supabase: Client = create_client( | |
| os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY") | |
| ) | |
| supabase_store = SupabaseVectorStore( | |
| client=supabase, | |
| embedding=HuggingFaceEmbeddings( | |
| model_name="sentence-transformers/all-mpnet-base-v2" | |
| ), | |
| table_name="search_documents", | |
| query_name="langchain_match_documents", | |
| ) | |
| retriever_tool = create_retriever_tool( | |
| retriever=supabase_store.as_retriever( | |
| search_type="similarity", search_kwargs={"k": 5} | |
| ), | |
| name="question_search", | |
| description="A tool to retrieve similar questions from a vector store.", | |
| ) | |
| tools = [ | |
| wikipedia_search, | |
| web_search, | |
| arvix_search, | |
| retriever_tool, | |
| ] | |
| def build_graph(): | |
| llm = ChatHuggingFace( | |
| llm=HuggingFaceEndpoint(repo_id="Qwen/Qwen2.5-Coder-32B-Instruct"), | |
| ) | |
| llm_with_tools = llm.bind_tools(tools) | |
| def assistant(state: MessagesState): | |
| """Assistant node""" | |
| return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
| def retriever(state: MessagesState): | |
| """Retriever node""" | |
| similar_question = supabase_store.similarity_search( | |
| state["messages"][0].content | |
| ) | |
| print("Similar questions:") | |
| print(similar_question) | |
| if len(similar_question) > 0: | |
| example_msg = HumanMessage( | |
| content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", | |
| ) | |
| # return {"messages": [{"role": "system", "content": similar_question[0].page_content}]} | |
| return {"messages": [sys_msg] + state["messages"] + [example_msg]} | |
| return {"messages": [sys_msg] + state["messages"]} | |
| builder = StateGraph(MessagesState) | |
| builder.add_node("retriever", retriever) | |
| builder.add_node("assistant", assistant) | |
| builder.add_node("tools", ToolNode(tools)) | |
| builder.add_edge(START, "retriever") | |
| builder.add_edge("retriever", "assistant") | |
| builder.add_conditional_edges( | |
| "assistant", | |
| tools_condition, | |
| ) | |
| builder.add_edge("tools", "assistant") | |
| return builder.compile() | |