vaibhav-vibe commited on
Commit
0464db3
·
verified ·
1 Parent(s): 705d9da

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +225 -0
app.py ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import requests
4
+ import inspect
5
+ import pandas as pd
6
+
7
+ from langchain_core.messages import HumanMessage
8
+ from agent import build_graph
9
+
10
+ # (Keep Constants as is)
11
+ # --- Constants ---
12
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
13
+
14
+
15
+ # --- Basic Agent Definition ---
16
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
17
+ class BasicAgent:
18
+ def __init__(self):
19
+ self.graph = build_graph()
20
+ print("BasicAgent initialized.")
21
+
22
+ def __call__(self, question: str) -> str:
23
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
24
+ msgs = [HumanMessage(content=question)]
25
+ msgs = self.graph.invoke({"messages": msgs})
26
+ print("Messages: ", msgs)
27
+ ans = msgs["messages"][-1].content
28
+ fixed_answer = ans.split("FINAL ANSWER: ")[-1]
29
+ return fixed_answer
30
+
31
+
32
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
33
+ """
34
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
35
+ and displays the results.
36
+ """
37
+ # --- Determine HF Space Runtime URL and Repo URL ---
38
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
39
+
40
+ if profile:
41
+ username = f"{profile.username}"
42
+ print(f"User logged in: {username}")
43
+ else:
44
+ print("User not logged in.")
45
+ return "Please Login to Hugging Face with the button.", None
46
+
47
+ api_url = DEFAULT_API_URL
48
+ questions_url = f"{api_url}/questions"
49
+ submit_url = f"{api_url}/submit"
50
+
51
+ # 1. Instantiate Agent ( modify this part to create your agent)
52
+ try:
53
+ agent = BasicAgent()
54
+ except Exception as e:
55
+ print(f"Error instantiating agent: {e}")
56
+ return f"Error initializing agent: {e}", None
57
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
58
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
59
+ print(agent_code)
60
+
61
+ # 2. Fetch Questions
62
+ print(f"Fetching questions from: {questions_url}")
63
+ try:
64
+ response = requests.get(questions_url, timeout=15)
65
+ response.raise_for_status()
66
+ questions_data = response.json()
67
+ if not questions_data:
68
+ print("Fetched questions list is empty.")
69
+ return "Fetched questions list is empty or invalid format.", None
70
+ print(f"Fetched {len(questions_data)} questions.")
71
+ except requests.exceptions.RequestException as e:
72
+ print(f"Error fetching questions: {e}")
73
+ return f"Error fetching questions: {e}", None
74
+ except requests.exceptions.JSONDecodeError as e:
75
+ print(f"Error decoding JSON response from questions endpoint: {e}")
76
+ print(f"Response text: {response.text[:500]}")
77
+ return f"Error decoding server response for questions: {e}", None
78
+ except Exception as e:
79
+ print(f"An unexpected error occurred fetching questions: {e}")
80
+ return f"An unexpected error occurred fetching questions: {e}", None
81
+
82
+ # 3. Run your Agent
83
+ results_log = []
84
+ answers_payload = []
85
+ print(f"Running agent on {len(questions_data)} questions...")
86
+ for item in questions_data:
87
+ task_id = item.get("task_id")
88
+ question_text = item.get("question")
89
+ if not task_id or question_text is None:
90
+ print(f"Skipping item with missing task_id or question: {item}")
91
+ continue
92
+ try:
93
+ submitted_answer = agent(question_text)
94
+ answers_payload.append(
95
+ {"task_id": task_id, "submitted_answer": submitted_answer}
96
+ )
97
+ results_log.append(
98
+ {
99
+ "Task ID": task_id,
100
+ "Question": question_text,
101
+ "Submitted Answer": submitted_answer,
102
+ }
103
+ )
104
+ except Exception as e:
105
+ print(f"Error running agent on task {task_id}: {e}")
106
+ results_log.append(
107
+ {
108
+ "Task ID": task_id,
109
+ "Question": question_text,
110
+ "Submitted Answer": f"AGENT ERROR: {e}",
111
+ }
112
+ )
113
+
114
+ if not answers_payload:
115
+ print("Agent did not produce any answers to submit.")
116
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
117
+
118
+ # 4. Prepare Submission
119
+ submission_data = {
120
+ "username": username.strip(),
121
+ "agent_code": agent_code,
122
+ "answers": answers_payload,
123
+ }
124
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
125
+ print(status_update)
126
+
127
+ # 5. Submit
128
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
129
+ try:
130
+ response = requests.post(submit_url, json=submission_data, timeout=60)
131
+ response.raise_for_status()
132
+ result_data = response.json()
133
+ final_status = (
134
+ f"Submission Successful!\n"
135
+ f"User: {result_data.get('username')}\n"
136
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
137
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
138
+ f"Message: {result_data.get('message', 'No message received.')}"
139
+ )
140
+ print("Submission successful.")
141
+ results_df = pd.DataFrame(results_log)
142
+ return final_status, results_df
143
+ except requests.exceptions.HTTPError as e:
144
+ error_detail = f"Server responded with status {e.response.status_code}."
145
+ try:
146
+ error_json = e.response.json()
147
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
148
+ except requests.exceptions.JSONDecodeError:
149
+ error_detail += f" Response: {e.response.text[:500]}"
150
+ status_message = f"Submission Failed: {error_detail}"
151
+ print(status_message)
152
+ results_df = pd.DataFrame(results_log)
153
+ return status_message, results_df
154
+ except requests.exceptions.Timeout:
155
+ status_message = "Submission Failed: The request timed out."
156
+ print(status_message)
157
+ results_df = pd.DataFrame(results_log)
158
+ return status_message, results_df
159
+ except requests.exceptions.RequestException as e:
160
+ status_message = f"Submission Failed: Network error - {e}"
161
+ print(status_message)
162
+ results_df = pd.DataFrame(results_log)
163
+ return status_message, results_df
164
+ except Exception as e:
165
+ status_message = f"An unexpected error occurred during submission: {e}"
166
+ print(status_message)
167
+ results_df = pd.DataFrame(results_log)
168
+ return status_message, results_df
169
+
170
+
171
+ # --- Build Gradio Interface using Blocks ---
172
+ with gr.Blocks() as demo:
173
+ gr.Markdown("# Basic Agent Evaluation Runner")
174
+ gr.Markdown(
175
+ """
176
+ **Instructions:**
177
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
178
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
179
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
180
+ ---
181
+ **Disclaimers:**
182
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
183
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
184
+ """
185
+ )
186
+
187
+ gr.LoginButton()
188
+
189
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
190
+
191
+ status_output = gr.Textbox(
192
+ label="Run Status / Submission Result", lines=5, interactive=False
193
+ )
194
+ # Removed max_rows=10 from DataFrame constructor
195
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
196
+
197
+ run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
198
+
199
+ if __name__ == "__main__":
200
+ print("\n" + "-" * 30 + " App Starting " + "-" * 30)
201
+ # Check for SPACE_HOST and SPACE_ID at startup for information
202
+ space_host_startup = os.getenv("SPACE_HOST")
203
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
204
+
205
+ if space_host_startup:
206
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
207
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
208
+ else:
209
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
210
+
211
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
212
+ print(f"✅ SPACE_ID found: {space_id_startup}")
213
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
214
+ print(
215
+ f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
216
+ )
217
+ else:
218
+ print(
219
+ "ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
220
+ )
221
+
222
+ print("-" * (60 + len(" App Starting ")) + "\n")
223
+
224
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
225
+ demo.launch(debug=True, share=False)