Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +184 -0
- dataset.txt +0 -0
- requirements.txt +3 -0
- state.skibidi +0 -0
app.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# imports
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
print("done importing packages...")
|
7 |
+
|
8 |
+
with open('dataset.txt', 'r') as f:
|
9 |
+
text = f.read()
|
10 |
+
|
11 |
+
# hyperparms
|
12 |
+
batch_size = 16
|
13 |
+
block_size = 32
|
14 |
+
max_iters = 5000
|
15 |
+
eval_interval = 100
|
16 |
+
learning_rate = 0.001
|
17 |
+
eval_iters = 200
|
18 |
+
n_embd = 64
|
19 |
+
n_head = 4
|
20 |
+
n_layer = 4
|
21 |
+
dropout = 0.0
|
22 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
23 |
+
torch.manual_seed(1337)
|
24 |
+
print("big brain stuff! setting up hyperparams")
|
25 |
+
|
26 |
+
#chars and mapping
|
27 |
+
chars = sorted(list(set(text)))
|
28 |
+
vocab_size = len(chars)
|
29 |
+
stoi = { ch:i for i,ch in enumerate(chars) }
|
30 |
+
itos = { i:ch for i,ch in enumerate(chars) }
|
31 |
+
encode = lambda s: [stoi[c] for c in s]
|
32 |
+
decode = lambda l: ''.join([itos[i] for i in l])
|
33 |
+
print("making human language understandable for my computer brain")
|
34 |
+
|
35 |
+
# training and test data split
|
36 |
+
data = torch.tensor(encode(text), dtype=torch.long)
|
37 |
+
n = int(0.9*len(data))
|
38 |
+
train_data = data[:n]
|
39 |
+
val_data = data[n:]
|
40 |
+
|
41 |
+
# data loading
|
42 |
+
def get_batch(split):
|
43 |
+
data = train_data if split == 'train' else val_data
|
44 |
+
ix = torch.randint(len(data) - block_size, (batch_size,))
|
45 |
+
x = torch.stack([data[i:i+block_size] for i in ix])
|
46 |
+
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
|
47 |
+
x, y = x.to(device), y.to(device)
|
48 |
+
return x, y
|
49 |
+
@torch.no_grad()
|
50 |
+
def estimate_loss():
|
51 |
+
out = {}
|
52 |
+
model.eval()
|
53 |
+
for split in ['train', 'val']:
|
54 |
+
losses = torch.zeros(eval_iters)
|
55 |
+
for k in range(eval_iters):
|
56 |
+
X, Y = get_batch(split)
|
57 |
+
logits, loss = model(X, Y)
|
58 |
+
losses[k] = loss.item()
|
59 |
+
out[split] = losses.mean()
|
60 |
+
model.train()
|
61 |
+
return out
|
62 |
+
|
63 |
+
class Head(nn.Module):
|
64 |
+
def __init__(self, head_size):
|
65 |
+
super().__init__()
|
66 |
+
self.key = nn.Linear(n_embd, head_size, bias=False)
|
67 |
+
self.query = nn.Linear(n_embd, head_size, bias=False)
|
68 |
+
self.value = nn.Linear(n_embd, head_size, bias=False)
|
69 |
+
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
|
70 |
+
self.dropout = nn.Dropout(dropout)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
B,T,C = x.shape
|
74 |
+
k = self.key(x)
|
75 |
+
q = self.query(x)
|
76 |
+
wei = q @ k.transpose(-2,-1) * C**-0.5
|
77 |
+
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
|
78 |
+
wei = F.softmax(wei, dim=-1)
|
79 |
+
wei = self.dropout(wei)
|
80 |
+
v = self.value(x)
|
81 |
+
out = wei @ v
|
82 |
+
return out
|
83 |
+
|
84 |
+
class MultiHeadAttention(nn.Module):
|
85 |
+
def __init__(self, num_heads, head_size):
|
86 |
+
super().__init__()
|
87 |
+
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
|
88 |
+
self.proj = nn.Linear(n_embd, n_embd)
|
89 |
+
self.dropout = nn.Dropout(dropout)
|
90 |
+
|
91 |
+
def forward(self, x):
|
92 |
+
out = torch.cat([h(x) for h in self.heads], dim=-1)
|
93 |
+
out = self.dropout(self.proj(out))
|
94 |
+
return out
|
95 |
+
|
96 |
+
class FeedFoward(nn.Module):
|
97 |
+
def __init__(self, n_embd):
|
98 |
+
super().__init__()
|
99 |
+
self.net = nn.Sequential(
|
100 |
+
nn.Linear(n_embd, 4 * n_embd),
|
101 |
+
nn.ReLU(),
|
102 |
+
nn.Linear(4 * n_embd, n_embd),
|
103 |
+
nn.Dropout(dropout),
|
104 |
+
)
|
105 |
+
|
106 |
+
def forward(self, x):
|
107 |
+
return self.net(x)
|
108 |
+
|
109 |
+
class Block(nn.Module):
|
110 |
+
def __init__(self, n_embd, n_head):
|
111 |
+
super().__init__()
|
112 |
+
head_size = n_embd // n_head
|
113 |
+
self.sa = MultiHeadAttention(n_head, head_size)
|
114 |
+
self.ffwd = FeedFoward(n_embd)
|
115 |
+
self.ln1 = nn.LayerNorm(n_embd)
|
116 |
+
self.ln2 = nn.LayerNorm(n_embd)
|
117 |
+
|
118 |
+
def forward(self, x):
|
119 |
+
x = x + self.sa(self.ln1(x))
|
120 |
+
x = x + self.ffwd(self.ln2(x))
|
121 |
+
return x
|
122 |
+
|
123 |
+
# bigram model
|
124 |
+
class BigramLanguageModel(nn.Module):
|
125 |
+
def __init__(self):
|
126 |
+
super().__init__()
|
127 |
+
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
|
128 |
+
self.position_embedding_table = nn.Embedding(block_size, n_embd)
|
129 |
+
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
|
130 |
+
self.ln_f = nn.LayerNorm(n_embd)
|
131 |
+
self.lm_head = nn.Linear(n_embd, vocab_size)
|
132 |
+
|
133 |
+
def forward(self, idx, targets=None):
|
134 |
+
B, T = idx.shape
|
135 |
+
tok_emb = self.token_embedding_table(idx)
|
136 |
+
pos_emb = self.position_embedding_table(torch.arange(T, device=device))
|
137 |
+
x = tok_emb + pos_emb
|
138 |
+
x = self.blocks(x)
|
139 |
+
x = self.ln_f(x)
|
140 |
+
logits = self.lm_head(x)
|
141 |
+
if targets is None:
|
142 |
+
loss = None
|
143 |
+
else:
|
144 |
+
B, T, C = logits.shape
|
145 |
+
logits = logits.view(B*T, C)
|
146 |
+
targets = targets.view(B*T)
|
147 |
+
loss = F.cross_entropy(logits, targets)
|
148 |
+
return logits, loss
|
149 |
+
|
150 |
+
def generate(self, idx, max_new_tokens):
|
151 |
+
for _ in range(max_new_tokens):
|
152 |
+
idx_cond = idx[:, -block_size:]
|
153 |
+
logits, loss = self(idx_cond)
|
154 |
+
logits = logits[:, -1, :]
|
155 |
+
probs = F.softmax(logits, dim=-1)
|
156 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
157 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
158 |
+
return idx
|
159 |
+
|
160 |
+
model = BigramLanguageModel()
|
161 |
+
model.load_state_dict(torch.load("state.skibidi",map_location = torch.device(device)))
|
162 |
+
m = model.to(device)
|
163 |
+
|
164 |
+
def generate_text(input_word, max_new_tokens=100):
|
165 |
+
model.eval()
|
166 |
+
input_indices = torch.tensor([encode(input_word)], dtype=torch.long, device=device)
|
167 |
+
generated_indices = model.generate(input_indices, max_new_tokens=max_new_tokens)
|
168 |
+
return decode(generated_indices[0].tolist())
|
169 |
+
|
170 |
+
iface = gr.Interface(
|
171 |
+
fn=generate_text,
|
172 |
+
inputs=[
|
173 |
+
gr.Textbox(label="Prompt", placeholder="W Sigma GPT according to critics"),
|
174 |
+
gr.Slider(minimum=1, maximum=1000, step=1, label="Number of characters to generate", value=100)
|
175 |
+
],
|
176 |
+
outputs=gr.Textbox(label="Generated Text"),
|
177 |
+
title="RizzlerGPT",
|
178 |
+
description="Best GPT in Ohio"
|
179 |
+
)
|
180 |
+
|
181 |
+
if __name__ == "__main__":
|
182 |
+
iface.launch()
|
183 |
+
|
184 |
+
print("running!")
|
dataset.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.22.2
|
2 |
+
gradio
|
3 |
+
torch == 2.4.0
|
state.skibidi
ADDED
Binary file (943 kB). View file
|
|