WhisperFusion / whisper_live /trt_transcriber.py
makaveli10
optimizations
9dcd6a2
raw
history blame
12.3 kB
import argparse
import json
import re
import time
from collections import OrderedDict
from pathlib import Path
from typing import Dict, Iterable, List, Optional, TextIO, Tuple, Union
import torch
import numpy as np
from whisper.tokenizer import get_tokenizer
from whisper_live.whisper_utils import (mel_filters, store_transcripts,
write_error_stats, load_audio_wav_format,
pad_or_trim)
import tensorrt_llm
import tensorrt_llm.logger as logger
from tensorrt_llm._utils import (str_dtype_to_torch, str_dtype_to_trt,
trt_dtype_to_torch)
from tensorrt_llm.runtime import ModelConfig, SamplingConfig
from tensorrt_llm.runtime.session import Session, TensorInfo
SAMPLE_RATE = 16000
N_FFT = 400
HOP_LENGTH = 160
CHUNK_LENGTH = 30
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
class WhisperEncoding:
def __init__(self, engine_dir):
self.session = self.get_session(engine_dir)
def get_session(self, engine_dir):
config_path = engine_dir / 'encoder_config.json'
with open(config_path, 'r') as f:
config = json.load(f)
use_gpt_attention_plugin = config['plugin_config'][
'gpt_attention_plugin']
dtype = config['builder_config']['precision']
n_mels = config['builder_config']['n_mels']
num_languages = config['builder_config']['num_languages']
self.dtype = dtype
self.n_mels = n_mels
self.num_languages = num_languages
serialize_path = engine_dir / f'whisper_encoder_{self.dtype}_tp1_rank0.engine'
with open(serialize_path, 'rb') as f:
session = Session.from_serialized_engine(f.read())
return session
def get_audio_features(self, mel):
inputs = OrderedDict()
output_list = []
inputs.update({'x': mel})
output_list.append(
TensorInfo('x', str_dtype_to_trt(self.dtype), mel.shape))
output_info = (self.session).infer_shapes(output_list)
logger.debug(f'output info {output_info}')
outputs = {
t.name: torch.empty(tuple(t.shape),
dtype=trt_dtype_to_torch(t.dtype),
device='cuda')
for t in output_info
}
stream = torch.cuda.current_stream()
ok = self.session.run(inputs=inputs,
outputs=outputs,
stream=stream.cuda_stream)
assert ok, 'Engine execution failed'
stream.synchronize()
audio_features = outputs['output']
return audio_features
class WhisperDecoding:
def __init__(self, engine_dir, runtime_mapping, debug_mode=False):
self.decoder_config = self.get_config(engine_dir)
self.decoder_generation_session = self.get_session(
engine_dir, runtime_mapping, debug_mode)
def get_config(self, engine_dir):
config_path = engine_dir / 'decoder_config.json'
with open(config_path, 'r') as f:
config = json.load(f)
decoder_config = OrderedDict()
decoder_config.update(config['plugin_config'])
decoder_config.update(config['builder_config'])
return decoder_config
def get_session(self, engine_dir, runtime_mapping, debug_mode=False):
dtype = self.decoder_config['precision']
serialize_path = engine_dir / f'whisper_decoder_{dtype}_tp1_rank0.engine'
with open(serialize_path, "rb") as f:
decoder_engine_buffer = f.read()
decoder_model_config = ModelConfig(
num_heads=self.decoder_config['num_heads'],
num_kv_heads=self.decoder_config['num_heads'],
hidden_size=self.decoder_config['hidden_size'],
vocab_size=self.decoder_config['vocab_size'],
num_layers=self.decoder_config['num_layers'],
gpt_attention_plugin=self.decoder_config['gpt_attention_plugin'],
remove_input_padding=self.decoder_config['remove_input_padding'],
cross_attention=self.decoder_config['cross_attention'],
has_position_embedding=self.
decoder_config['has_position_embedding'],
has_token_type_embedding=self.
decoder_config['has_token_type_embedding'],
)
decoder_generation_session = tensorrt_llm.runtime.GenerationSession(
decoder_model_config,
decoder_engine_buffer,
runtime_mapping,
debug_mode=debug_mode)
return decoder_generation_session
def generate(self,
decoder_input_ids,
encoder_outputs,
eot_id,
max_new_tokens=40,
num_beams=1):
encoder_input_lengths = torch.tensor(
[encoder_outputs.shape[1] for x in range(encoder_outputs.shape[0])],
dtype=torch.int32,
device='cuda')
decoder_input_lengths = torch.tensor([
decoder_input_ids.shape[-1]
for _ in range(decoder_input_ids.shape[0])
],
dtype=torch.int32,
device='cuda')
decoder_max_input_length = torch.max(decoder_input_lengths).item()
# generation config
sampling_config = SamplingConfig(end_id=eot_id,
pad_id=eot_id,
num_beams=num_beams)
self.decoder_generation_session.setup(
decoder_input_lengths.size(0),
decoder_max_input_length,
max_new_tokens,
beam_width=num_beams,
encoder_max_input_length=encoder_outputs.shape[1])
torch.cuda.synchronize()
decoder_input_ids = decoder_input_ids.type(torch.int32).cuda()
output_ids = self.decoder_generation_session.decode(
decoder_input_ids,
decoder_input_lengths,
sampling_config,
encoder_output=encoder_outputs,
encoder_input_lengths=encoder_input_lengths,
)
torch.cuda.synchronize()
# get the list of int from output_ids tensor
output_ids = output_ids.cpu().numpy().tolist()
return output_ids
class WhisperTRTLLM(object):
def __init__(
self,
engine_dir,
debug_mode=False,
assets_dir=None,
device=None
):
world_size = 1
runtime_rank = tensorrt_llm.mpi_rank()
runtime_mapping = tensorrt_llm.Mapping(world_size, runtime_rank)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
engine_dir = Path(engine_dir)
self.encoder = WhisperEncoding(engine_dir)
self.decoder = WhisperDecoding(engine_dir,
runtime_mapping,
debug_mode=False)
self.n_mels = self.encoder.n_mels
# self.tokenizer = get_tokenizer(num_languages=self.encoder.num_languages,
# tokenizer_dir=assets_dir)
self.device = device
self.tokenizer = get_tokenizer(
False,
# num_languages=self.encoder.num_languages,
language="en",
task="transcribe",
)
self.filters = mel_filters(self.device, self.encoder.n_mels, assets_dir)
def log_mel_spectrogram(
self,
audio: Union[str, np.ndarray, torch.Tensor],
padding: int = 0,
return_duration = True
):
"""
Compute the log-Mel spectrogram of
Parameters
----------
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
n_mels: int
The number of Mel-frequency filters, only 80 and 128 are supported
padding: int
Number of zero samples to pad to the right
device: Optional[Union[str, torch.device]]
If given, the audio tensor is moved to this device before STFT
Returns
-------
torch.Tensor, shape = (80 or 128, n_frames)
A Tensor that contains the Mel spectrogram
"""
if not torch.is_tensor(audio):
if isinstance(audio, str):
if audio.endswith('.wav'):
audio, _ = load_audio_wav_format(audio)
else:
audio = load_audio(audio)
assert isinstance(audio,
np.ndarray), f"Unsupported audio type: {type(audio)}"
duration = audio.shape[-1] / SAMPLE_RATE
audio = pad_or_trim(audio, N_SAMPLES)
audio = audio.astype(np.float32)
audio = torch.from_numpy(audio)
if self.device is not None:
audio = audio.to(self.device)
if padding > 0:
audio = F.pad(audio, (0, padding))
window = torch.hann_window(N_FFT).to(audio.device)
stft = torch.stft(audio,
N_FFT,
HOP_LENGTH,
window=window,
return_complex=True)
magnitudes = stft[..., :-1].abs()**2
mel_spec = self.filters @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
if return_duration:
return log_spec, duration
else:
return log_spec
def process_batch(
self,
mel,
text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
num_beams=1):
prompt_id = self.tokenizer.encode(
text_prefix, allowed_special=set(self.tokenizer.special_tokens.keys()))
prompt_id = torch.tensor(prompt_id)
batch_size = mel.shape[0]
decoder_input_ids = prompt_id.repeat(batch_size, 1)
encoder_output = self.encoder.get_audio_features(mel)
output_ids = self.decoder.generate(decoder_input_ids,
encoder_output,
self.tokenizer.eot,
max_new_tokens=96,
num_beams=num_beams)
texts = []
for i in range(len(output_ids)):
text = self.tokenizer.decode(output_ids[i][0]).strip()
texts.append(text)
return texts
def transcribe(
self,
mel,
text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
dtype='float16',
batch_size=1,
num_beams=1,
):
mel = mel.type(str_dtype_to_torch(dtype))
mel = mel.unsqueeze(0)
predictions = self.process_batch(mel, text_prefix, num_beams)
prediction = predictions[0]
# remove all special tokens in the prediction
prediction = re.sub(r'<\|.*?\|>', '', prediction)
return prediction.strip()
def decode_wav_file(
model,
mel,
text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
dtype='float16',
batch_size=1,
num_beams=1,
normalizer=None,
mel_filters_dir=None):
mel = mel.type(str_dtype_to_torch(dtype))
mel = mel.unsqueeze(0)
# repeat the mel spectrogram to match the batch size
mel = mel.repeat(batch_size, 1, 1)
predictions = model.process_batch(mel, text_prefix, num_beams)
prediction = predictions[0]
# remove all special tokens in the prediction
prediction = re.sub(r'<\|.*?\|>', '', prediction)
if normalizer:
prediction = normalizer(prediction)
return prediction.strip()
if __name__=="__main__":
tensorrt_llm.logger.set_level("error")
model = WhisperTRTLLM("/root/TensorRT-LLM/examples/whisper/whisper_small_en", False, "../assets", device="cuda")
mel, total_duration = model.log_mel_spectrogram(
"../assets/1221-135766-0002.wav",
)
results = model.transcribe(mel)
print(results, total_duration)