Commit
Β·
6f88fe0
1
Parent(s):
ea89515
π Update SAMADHAN app with enhanced UI and department classification
Browse files- Enhanced UI with better text contrast and visibility
- Added comprehensive department classification system
- Improved upload area styling and readability
- Updated README with complete feature description
- Fixed text color issues for better accessibility
- Added professional gradient design and responsive layout
- README.md +53 -3
- app.py +439 -41
- requirements.txt +1 -0
README.md
CHANGED
|
@@ -1,12 +1,62 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.46.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: SAMADHAN - Smart Infrastructure Detection
|
| 3 |
+
emoji: οΏ½
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.46.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# π SAMADHAN - Smart Infrastructure Detection System
|
| 14 |
+
|
| 15 |
+
AI-Powered Classification for Urban Infrastructure Management using YOLOv8
|
| 16 |
+
|
| 17 |
+
## π― Features
|
| 18 |
+
|
| 19 |
+
- **Image Detection**: Upload images to detect and classify infrastructure objects
|
| 20 |
+
- **Video Processing**: Process videos with real-time object detection
|
| 21 |
+
- **Department Classification**: Automatically categorizes detections into three main departments:
|
| 22 |
+
- ποΈ **Garbage Department**: Container, Garbage
|
| 23 |
+
- π³οΈ **Pothole Department**: Crocodile crack, Longitudinal crack, Pothole
|
| 24 |
+
- π‘ **Streetlight Department**: HV-switch, Crossarm, Streetlight, Traffic-light, Transformer
|
| 25 |
+
|
| 26 |
+
## π How to Use
|
| 27 |
+
|
| 28 |
+
1. **Image Detection**:
|
| 29 |
+
- Upload an image using the file uploader
|
| 30 |
+
- The system automatically processes and shows detection results
|
| 31 |
+
- View classified department and detected objects with confidence scores
|
| 32 |
+
|
| 33 |
+
2. **Video Detection**:
|
| 34 |
+
- Upload a video file (MP4, AVI, MOV)
|
| 35 |
+
- Click "Process Video" to analyze
|
| 36 |
+
- Download the processed video with detection annotations
|
| 37 |
+
|
| 38 |
+
## π οΈ Technology Stack
|
| 39 |
+
|
| 40 |
+
- **AI Model**: YOLOv8 (Ultralytics)
|
| 41 |
+
- **Frontend**: Gradio
|
| 42 |
+
- **Backend**: Python, OpenCV
|
| 43 |
+
- **Deployment**: Hugging Face Spaces
|
| 44 |
+
|
| 45 |
+
## π Supported Objects
|
| 46 |
+
|
| 47 |
+
The system can detect and classify 10 different types of infrastructure objects:
|
| 48 |
+
- Container, Garbage
|
| 49 |
+
- Crocodile crack, Longitudinal crack, Pothole
|
| 50 |
+
- HV-switch, Crossarm, Streetlight, Traffic-light, Transformer
|
| 51 |
+
|
| 52 |
+
## π¨ Interface
|
| 53 |
+
|
| 54 |
+
Modern, responsive web interface with:
|
| 55 |
+
- Professional gradient design
|
| 56 |
+
- Real-time processing indicators
|
| 57 |
+
- Clear department classification results
|
| 58 |
+
- Mobile-friendly layout
|
| 59 |
+
|
| 60 |
+
---
|
| 61 |
+
|
| 62 |
+
Built with β€οΈ using YOLOv8 and Gradio | Powered by AI for Smart City Management
|
app.py
CHANGED
|
@@ -3,57 +3,455 @@ import gradio as gr
|
|
| 3 |
from ultralytics import YOLO
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
import cv2, tempfile
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
# Load YOLO model from HF Hub
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
model = YOLO(model_path)
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# Image detection
|
| 12 |
def detect_image(image):
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Video detection
|
| 17 |
def detect_video(video_path):
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
cap.release()
|
| 35 |
-
out.release()
|
| 36 |
-
return out_path
|
| 37 |
-
|
| 38 |
-
# Interfaces
|
| 39 |
-
image_interface = gr.Interface(
|
| 40 |
-
fn=detect_image,
|
| 41 |
-
inputs=gr.Image(type="numpy"),
|
| 42 |
-
outputs=gr.Image(type="numpy"),
|
| 43 |
-
title="Garbage & Pothole Detector (Image)"
|
| 44 |
-
)
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
)
|
|
|
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
if __name__ == "__main__":
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from ultralytics import YOLO
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
import cv2, tempfile
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image
|
| 8 |
|
| 9 |
+
# Load YOLO model from HF Hub with token
|
| 10 |
+
# Replace 'your_token_here' with your actual HF token or use huggingface-cli login
|
| 11 |
+
model_path = hf_hub_download(
|
| 12 |
+
repo_id="utkarsh-23/yolov8m-garbage-pothole-detector",
|
| 13 |
+
filename="best.pt",
|
| 14 |
+
# token="your_token_here" # Uncomment and add your token if needed
|
| 15 |
+
)
|
| 16 |
model = YOLO(model_path)
|
| 17 |
|
| 18 |
+
# Define class names
|
| 19 |
+
class_names = ['Container', 'Garbage', 'crocodile crack', 'longitudinal crack', 'pothole',
|
| 20 |
+
'HV-switch', 'crossarm', 'streetlight', 'traffic-light', 'transformer']
|
| 21 |
+
|
| 22 |
+
# Define department mapping
|
| 23 |
+
department_mapping = {
|
| 24 |
+
'Container': 'Garbage',
|
| 25 |
+
'Garbage': 'Garbage',
|
| 26 |
+
'crocodile crack': 'Pothole',
|
| 27 |
+
'longitudinal crack': 'Pothole',
|
| 28 |
+
'pothole': 'Pothole',
|
| 29 |
+
'HV-switch': 'Streetlight',
|
| 30 |
+
'crossarm': 'Streetlight',
|
| 31 |
+
'streetlight': 'Streetlight',
|
| 32 |
+
'traffic-light': 'Streetlight',
|
| 33 |
+
'transformer': 'Streetlight'
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
# Image detection
|
| 37 |
def detect_image(image):
|
| 38 |
+
if image is None:
|
| 39 |
+
return None, "β οΈ Please upload an image first!"
|
| 40 |
+
|
| 41 |
+
try:
|
| 42 |
+
results = model(image)
|
| 43 |
+
|
| 44 |
+
# Get detected classes and departments
|
| 45 |
+
detected_objects = []
|
| 46 |
+
detected_departments = set()
|
| 47 |
+
|
| 48 |
+
if results[0].boxes is not None:
|
| 49 |
+
for box in results[0].boxes:
|
| 50 |
+
class_id = int(box.cls[0])
|
| 51 |
+
confidence = float(box.conf[0])
|
| 52 |
+
class_name = class_names[class_id] if class_id < len(class_names) else f"Class {class_id}"
|
| 53 |
+
department = department_mapping.get(class_name, "Unknown")
|
| 54 |
+
|
| 55 |
+
detected_objects.append(f"{class_name} ({confidence:.2f})")
|
| 56 |
+
detected_departments.add(department)
|
| 57 |
+
|
| 58 |
+
# Create classification text with emojis
|
| 59 |
+
if detected_departments:
|
| 60 |
+
if len(detected_departments) == 1:
|
| 61 |
+
department = list(detected_departments)[0]
|
| 62 |
+
dept_emoji = {"Garbage": "ποΈ", "Pothole": "π³οΈ", "Streetlight": "π‘"}.get(department, "π")
|
| 63 |
+
classification_text = f"{dept_emoji} **This image is classified under the {department} department**"
|
| 64 |
+
else:
|
| 65 |
+
departments_list = ", ".join(sorted(detected_departments))
|
| 66 |
+
classification_text = f"π **This image is classified under multiple departments:** {departments_list}"
|
| 67 |
+
|
| 68 |
+
# Add detailed detection info
|
| 69 |
+
classification_text += "\n\n### π Detected Objects:\n"
|
| 70 |
+
for obj in detected_objects:
|
| 71 |
+
classification_text += f"β’ {obj}\n"
|
| 72 |
+
else:
|
| 73 |
+
classification_text = "β **No objects detected**\n\nPlease try with a different image containing garbage, potholes, or streetlight infrastructure."
|
| 74 |
+
|
| 75 |
+
annotated_image = results[0].plot()
|
| 76 |
+
return annotated_image, classification_text
|
| 77 |
+
|
| 78 |
+
except Exception as e:
|
| 79 |
+
return None, f"β **Error processing image:** {str(e)}"
|
| 80 |
|
| 81 |
# Video detection
|
| 82 |
def detect_video(video_path):
|
| 83 |
+
if video_path is None:
|
| 84 |
+
return None
|
| 85 |
+
|
| 86 |
+
try:
|
| 87 |
+
cap = cv2.VideoCapture(video_path)
|
| 88 |
+
if not cap.isOpened():
|
| 89 |
+
return None
|
| 90 |
+
|
| 91 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 92 |
+
out_path = tempfile.mktemp(suffix=".mp4")
|
| 93 |
+
|
| 94 |
+
# Get video properties
|
| 95 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 96 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 97 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 98 |
+
|
| 99 |
+
out = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
|
| 100 |
|
| 101 |
+
while cap.isOpened():
|
| 102 |
+
ret, frame = cap.read()
|
| 103 |
+
if not ret:
|
| 104 |
+
break
|
| 105 |
+
results = model(frame)
|
| 106 |
+
annotated_frame = results[0].plot()
|
| 107 |
+
out.write(annotated_frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
cap.release()
|
| 110 |
+
out.release()
|
| 111 |
+
return out_path
|
| 112 |
+
|
| 113 |
+
except Exception as e:
|
| 114 |
+
print(f"Error processing video: {e}")
|
| 115 |
+
return None
|
| 116 |
|
| 117 |
+
# Custom CSS for better UI
|
| 118 |
+
custom_css = """
|
| 119 |
+
.gradio-container {
|
| 120 |
+
max-width: 1200px !important;
|
| 121 |
+
margin: auto !important;
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
.main-header {
|
| 125 |
+
text-align: center;
|
| 126 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 127 |
+
color: white;
|
| 128 |
+
padding: 2rem;
|
| 129 |
+
border-radius: 10px;
|
| 130 |
+
margin-bottom: 2rem;
|
| 131 |
+
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
|
| 132 |
+
}
|
| 133 |
+
|
| 134 |
+
.department-info {
|
| 135 |
+
background: #f8f9fa;
|
| 136 |
+
border-left: 4px solid #007bff;
|
| 137 |
+
padding: 1rem;
|
| 138 |
+
margin: 1rem 0;
|
| 139 |
+
border-radius: 5px;
|
| 140 |
+
color: #333 !important;
|
| 141 |
+
}
|
| 142 |
+
|
| 143 |
+
.department-info h3 {
|
| 144 |
+
color: #2c3e50 !important;
|
| 145 |
+
margin-bottom: 1rem !important;
|
| 146 |
+
font-weight: 600 !important;
|
| 147 |
+
}
|
| 148 |
+
|
| 149 |
+
.department-info div {
|
| 150 |
+
color: #333 !important;
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
.department-info strong {
|
| 154 |
+
color: #2c3e50 !important;
|
| 155 |
+
font-weight: 600 !important;
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
.upload-area {
|
| 159 |
+
border: 2px dashed #007bff;
|
| 160 |
+
border-radius: 10px;
|
| 161 |
+
padding: 2rem;
|
| 162 |
+
text-align: center;
|
| 163 |
+
background: #f8f9fa;
|
| 164 |
+
transition: all 0.3s ease;
|
| 165 |
+
color: #333 !important;
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
.upload-area:hover {
|
| 169 |
+
border-color: #0056b3;
|
| 170 |
+
background: #e3f2fd;
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
/* Upload area text styling */
|
| 174 |
+
.upload-area .upload-text {
|
| 175 |
+
color: #333 !important;
|
| 176 |
+
font-weight: 500 !important;
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
/* Fix for file upload component text */
|
| 180 |
+
.file-upload {
|
| 181 |
+
color: #333 !important;
|
| 182 |
+
}
|
| 183 |
+
|
| 184 |
+
.file-upload .upload-text {
|
| 185 |
+
color: #333 !important;
|
| 186 |
+
}
|
| 187 |
+
|
| 188 |
+
/* Gradio file upload specific styling */
|
| 189 |
+
.gr-file-upload {
|
| 190 |
+
color: #333 !important;
|
| 191 |
+
}
|
| 192 |
+
|
| 193 |
+
.gr-file-upload .upload-text,
|
| 194 |
+
.gr-file-upload .file-preview,
|
| 195 |
+
.gr-file-upload .file-name {
|
| 196 |
+
color: #333 !important;
|
| 197 |
+
}
|
| 198 |
+
|
| 199 |
+
/* Additional upload component fixes */
|
| 200 |
+
[data-testid="upload-button"] {
|
| 201 |
+
color: #333 !important;
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
.upload-container {
|
| 205 |
+
color: #333 !important;
|
| 206 |
+
}
|
| 207 |
+
|
| 208 |
+
.upload-container * {
|
| 209 |
+
color: #333 !important;
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
/* Specific targeting for upload text */
|
| 213 |
+
.svelte-1nausj1 {
|
| 214 |
+
color: #333 !important;
|
| 215 |
+
}
|
| 216 |
+
|
| 217 |
+
.svelte-1nausj1 * {
|
| 218 |
+
color: #333 !important;
|
| 219 |
+
}
|
| 220 |
+
|
| 221 |
+
.classification-result {
|
| 222 |
+
background: #ffffff !important;
|
| 223 |
+
border: 1px solid #e0e0e0 !important;
|
| 224 |
+
border-radius: 8px !important;
|
| 225 |
+
padding: 1.5rem !important;
|
| 226 |
+
color: #333333 !important;
|
| 227 |
+
font-size: 14px !important;
|
| 228 |
+
line-height: 1.6 !important;
|
| 229 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1) !important;
|
| 230 |
+
}
|
| 231 |
+
|
| 232 |
+
.classification-result h3 {
|
| 233 |
+
color: #2c3e50 !important;
|
| 234 |
+
margin-top: 1rem !important;
|
| 235 |
+
margin-bottom: 0.5rem !important;
|
| 236 |
+
}
|
| 237 |
+
|
| 238 |
+
.classification-result p {
|
| 239 |
+
color: #333333 !important;
|
| 240 |
+
margin-bottom: 0.8rem !important;
|
| 241 |
+
}
|
| 242 |
+
|
| 243 |
+
.classification-result strong {
|
| 244 |
+
color: #2c3e50 !important;
|
| 245 |
+
font-weight: 600 !important;
|
| 246 |
+
}
|
| 247 |
+
|
| 248 |
+
.classification-result ul, .classification-result li {
|
| 249 |
+
color: #444444 !important;
|
| 250 |
+
}
|
| 251 |
+
|
| 252 |
+
/* Fix for markdown content */
|
| 253 |
+
.markdown {
|
| 254 |
+
background: #ffffff !important;
|
| 255 |
+
color: #333333 !important;
|
| 256 |
+
}
|
| 257 |
+
|
| 258 |
+
.markdown h1, .markdown h2, .markdown h3, .markdown h4, .markdown h5, .markdown h6 {
|
| 259 |
+
color: #2c3e50 !important;
|
| 260 |
+
}
|
| 261 |
+
|
| 262 |
+
.markdown p, .markdown li, .markdown span {
|
| 263 |
+
color: #333333 !important;
|
| 264 |
+
}
|
| 265 |
+
|
| 266 |
+
.markdown strong {
|
| 267 |
+
color: #2c3e50 !important;
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
footer {
|
| 271 |
+
text-align: center;
|
| 272 |
+
margin-top: 2rem;
|
| 273 |
+
padding: 1rem;
|
| 274 |
+
color: #666;
|
| 275 |
+
}
|
| 276 |
+
|
| 277 |
+
/* Additional text contrast fixes */
|
| 278 |
+
.block.svelte-90oupt {
|
| 279 |
+
background: #ffffff !important;
|
| 280 |
+
}
|
| 281 |
+
|
| 282 |
+
.prose {
|
| 283 |
+
color: #333333 !important;
|
| 284 |
+
}
|
| 285 |
+
|
| 286 |
+
.prose h1, .prose h2, .prose h3 {
|
| 287 |
+
color: #2c3e50 !important;
|
| 288 |
+
}
|
| 289 |
+
|
| 290 |
+
.prose p, .prose li {
|
| 291 |
+
color: #333333 !important;
|
| 292 |
+
}
|
| 293 |
+
|
| 294 |
+
/* Upload component text color fixes */
|
| 295 |
+
.image-container,
|
| 296 |
+
.video-container {
|
| 297 |
+
color: #333 !important;
|
| 298 |
+
}
|
| 299 |
+
|
| 300 |
+
.image-container *,
|
| 301 |
+
.video-container * {
|
| 302 |
+
color: #333 !important;
|
| 303 |
+
}
|
| 304 |
+
|
| 305 |
+
/* More specific upload text targeting */
|
| 306 |
+
div[data-testid*="upload"] {
|
| 307 |
+
color: #333 !important;
|
| 308 |
+
}
|
| 309 |
+
|
| 310 |
+
div[data-testid*="upload"] * {
|
| 311 |
+
color: #333 !important;
|
| 312 |
+
}
|
| 313 |
+
|
| 314 |
+
/* Force text visibility in upload areas */
|
| 315 |
+
.block.svelte-1t38q2d {
|
| 316 |
+
color: #333 !important;
|
| 317 |
+
}
|
| 318 |
+
|
| 319 |
+
.block.svelte-1t38q2d * {
|
| 320 |
+
color: #333 !important;
|
| 321 |
+
}
|
| 322 |
+
|
| 323 |
+
/* Additional upload text fixes */
|
| 324 |
+
.uploading,
|
| 325 |
+
.upload-instructions,
|
| 326 |
+
.drop-zone {
|
| 327 |
+
color: #333 !important;
|
| 328 |
+
}
|
| 329 |
+
|
| 330 |
+
.uploading *,
|
| 331 |
+
.upload-instructions *,
|
| 332 |
+
.drop-zone * {
|
| 333 |
+
color: #333 !important;
|
| 334 |
+
}
|
| 335 |
+
"""
|
| 336 |
+
|
| 337 |
+
# Header HTML
|
| 338 |
+
header_html = """
|
| 339 |
+
<div class="main-header">
|
| 340 |
+
<h1>π SAMADHAN </h1>
|
| 341 |
+
<p>AI-Powered Classification for Urban Infrastructure Management</p>
|
| 342 |
+
<div class="department-info">
|
| 343 |
+
<h3 style="color: #2c3e50 !important; margin-bottom: 1rem;">π Detection Categories:</h3>
|
| 344 |
+
<div style="display: flex; justify-content: center; gap: 2rem; margin-top: 1rem; flex-wrap: wrap;">
|
| 345 |
+
<div style="color: #333 !important; font-weight: 500;"><strong style="color: #2c3e50 !important;">ποΈ Garbage Department:</strong> Container, Garbage</div>
|
| 346 |
+
<div style="color: #333 !important; font-weight: 500;"><strong style="color: #2c3e50 !important;">π³οΈ Pothole Department:</strong> Cracks, Potholes</div>
|
| 347 |
+
<div style="color: #333 !important; font-weight: 500;"><strong style="color: #2c3e50 !important;">π‘ Streetlight Department:</strong> Electrical Infrastructure</div>
|
| 348 |
+
</div>
|
| 349 |
+
</div>
|
| 350 |
+
</div>
|
| 351 |
+
"""
|
| 352 |
+
|
| 353 |
+
# Footer HTML
|
| 354 |
+
footer_html = """
|
| 355 |
+
<div style="text-align: center; margin-top: 2rem; padding: 1rem; color: #666;">
|
| 356 |
+
<p>Built with β€οΈ using YOLOv8 and Gradio | Powered by AI for Smart City Management</p>
|
| 357 |
+
</div>
|
| 358 |
+
"""
|
| 359 |
+
|
| 360 |
+
# Interfaces with enhanced UI
|
| 361 |
+
with gr.Blocks(css=custom_css, title="Infrastructure Detection System", theme=gr.themes.Soft()) as demo:
|
| 362 |
+
gr.HTML(header_html)
|
| 363 |
+
|
| 364 |
+
with gr.Tabs() as tabs:
|
| 365 |
+
with gr.TabItem("πΈ Image Detection", elem_id="image-tab"):
|
| 366 |
+
with gr.Row():
|
| 367 |
+
with gr.Column(scale=1):
|
| 368 |
+
image_input = gr.Image(
|
| 369 |
+
label="Upload Image",
|
| 370 |
+
type="numpy",
|
| 371 |
+
elem_classes="upload-area"
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
gr.Examples(
|
| 375 |
+
examples=[], # Add example image paths here if you have any
|
| 376 |
+
inputs=image_input,
|
| 377 |
+
label="Example Images"
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
image_btn = gr.Button(
|
| 381 |
+
"π Analyze Image",
|
| 382 |
+
variant="primary",
|
| 383 |
+
size="lg"
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
with gr.Column(scale=1):
|
| 387 |
+
image_output = gr.Image(
|
| 388 |
+
label="Detection Results",
|
| 389 |
+
type="numpy"
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
classification_output = gr.Markdown(
|
| 393 |
+
label="Department Classification",
|
| 394 |
+
elem_classes="classification-result"
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
with gr.TabItem("π₯ Video Detection", elem_id="video-tab"):
|
| 398 |
+
with gr.Row():
|
| 399 |
+
with gr.Column(scale=1):
|
| 400 |
+
video_input = gr.Video(
|
| 401 |
+
label="Upload Video",
|
| 402 |
+
elem_classes="upload-area"
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
video_btn = gr.Button(
|
| 406 |
+
"π¬ Process Video",
|
| 407 |
+
variant="primary",
|
| 408 |
+
size="lg"
|
| 409 |
+
)
|
| 410 |
+
|
| 411 |
+
gr.Markdown("""
|
| 412 |
+
### π Video Processing Notes:
|
| 413 |
+
- Supports common video formats (MP4, AVI, MOV)
|
| 414 |
+
- Processing time depends on video length
|
| 415 |
+
- Large videos may take several minutes
|
| 416 |
+
""")
|
| 417 |
+
|
| 418 |
+
with gr.Column(scale=1):
|
| 419 |
+
video_output = gr.Video(
|
| 420 |
+
label="Processed Video with Detections"
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
# Event handlers
|
| 424 |
+
image_btn.click(
|
| 425 |
+
fn=detect_image,
|
| 426 |
+
inputs=image_input,
|
| 427 |
+
outputs=[image_output, classification_output],
|
| 428 |
+
show_progress=True
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
video_btn.click(
|
| 432 |
+
fn=detect_video,
|
| 433 |
+
inputs=video_input,
|
| 434 |
+
outputs=video_output,
|
| 435 |
+
show_progress=True
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# Auto-process when image is uploaded
|
| 439 |
+
image_input.change(
|
| 440 |
+
fn=detect_image,
|
| 441 |
+
inputs=image_input,
|
| 442 |
+
outputs=[image_output, classification_output],
|
| 443 |
+
show_progress=True
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
gr.HTML(footer_html)
|
| 447 |
|
| 448 |
if __name__ == "__main__":
|
| 449 |
+
print("π Starting Infrastructure Detection System...")
|
| 450 |
+
print("π Loading AI model...")
|
| 451 |
+
demo.launch(
|
| 452 |
+
share=False,
|
| 453 |
+
inbrowser=True,
|
| 454 |
+
show_error=True,
|
| 455 |
+
favicon_path=None,
|
| 456 |
+
app_kwargs={"docs_url": None}
|
| 457 |
+
)
|
requirements.txt
CHANGED
|
@@ -2,3 +2,4 @@ ultralytics==8.3.202
|
|
| 2 |
gradio==5.46.0
|
| 3 |
huggingface_hub==0.35.0
|
| 4 |
opencv-python==4.12.0.88
|
|
|
|
|
|
| 2 |
gradio==5.46.0
|
| 3 |
huggingface_hub==0.35.0
|
| 4 |
opencv-python==4.12.0.88
|
| 5 |
+
Pillow>=9.0.0
|