Spaces:
Running
Running
| # Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| from ..configuration_utils import ConfigMixin, register_to_config | |
| from ..loaders import FromOriginalModelMixin, PeftAdapterMixin | |
| from ..models.attention import JointTransformerBlock | |
| from ..models.attention_processor import Attention, AttentionProcessor, FusedJointAttnProcessor2_0 | |
| from ..models.modeling_outputs import Transformer2DModelOutput | |
| from ..models.modeling_utils import ModelMixin | |
| from ..utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers | |
| from .controlnet import BaseOutput, zero_module | |
| from .embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class SD3ControlNetOutput(BaseOutput): | |
| controlnet_block_samples: Tuple[torch.Tensor] | |
| class SD3ControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| sample_size: int = 128, | |
| patch_size: int = 2, | |
| in_channels: int = 16, | |
| num_layers: int = 18, | |
| attention_head_dim: int = 64, | |
| num_attention_heads: int = 18, | |
| joint_attention_dim: int = 4096, | |
| caption_projection_dim: int = 1152, | |
| pooled_projection_dim: int = 2048, | |
| out_channels: int = 16, | |
| pos_embed_max_size: int = 96, | |
| ): | |
| super().__init__() | |
| default_out_channels = in_channels | |
| self.out_channels = out_channels if out_channels is not None else default_out_channels | |
| self.inner_dim = num_attention_heads * attention_head_dim | |
| self.pos_embed = PatchEmbed( | |
| height=sample_size, | |
| width=sample_size, | |
| patch_size=patch_size, | |
| in_channels=in_channels, | |
| embed_dim=self.inner_dim, | |
| pos_embed_max_size=pos_embed_max_size, | |
| ) | |
| self.time_text_embed = CombinedTimestepTextProjEmbeddings( | |
| embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim | |
| ) | |
| self.context_embedder = nn.Linear(joint_attention_dim, caption_projection_dim) | |
| # `attention_head_dim` is doubled to account for the mixing. | |
| # It needs to crafted when we get the actual checkpoints. | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| JointTransformerBlock( | |
| dim=self.inner_dim, | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=self.config.attention_head_dim, | |
| context_pre_only=False, | |
| ) | |
| for i in range(num_layers) | |
| ] | |
| ) | |
| # controlnet_blocks | |
| self.controlnet_blocks = nn.ModuleList([]) | |
| for _ in range(len(self.transformer_blocks)): | |
| controlnet_block = nn.Linear(self.inner_dim, self.inner_dim) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_blocks.append(controlnet_block) | |
| pos_embed_input = PatchEmbed( | |
| height=sample_size, | |
| width=sample_size, | |
| patch_size=patch_size, | |
| in_channels=in_channels, | |
| embed_dim=self.inner_dim, | |
| pos_embed_type=None, | |
| ) | |
| self.pos_embed_input = zero_module(pos_embed_input) | |
| self.gradient_checkpointing = False | |
| # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking | |
| def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: | |
| """ | |
| Sets the attention processor to use [feed forward | |
| chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). | |
| Parameters: | |
| chunk_size (`int`, *optional*): | |
| The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually | |
| over each tensor of dim=`dim`. | |
| dim (`int`, *optional*, defaults to `0`): | |
| The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) | |
| or dim=1 (sequence length). | |
| """ | |
| if dim not in [0, 1]: | |
| raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") | |
| # By default chunk size is 1 | |
| chunk_size = chunk_size or 1 | |
| def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
| if hasattr(module, "set_chunk_feed_forward"): | |
| module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
| for child in module.children(): | |
| fn_recursive_feed_forward(child, chunk_size, dim) | |
| for module in self.children(): | |
| fn_recursive_feed_forward(module, chunk_size, dim) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor() | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| # Copied from diffusers.models.transformers.transformer_sd3.SD3Transformer2DModel.fuse_qkv_projections | |
| def fuse_qkv_projections(self): | |
| """ | |
| Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) | |
| are fused. For cross-attention modules, key and value projection matrices are fused. | |
| <Tip warning={true}> | |
| This API is 🧪 experimental. | |
| </Tip> | |
| """ | |
| self.original_attn_processors = None | |
| for _, attn_processor in self.attn_processors.items(): | |
| if "Added" in str(attn_processor.__class__.__name__): | |
| raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") | |
| self.original_attn_processors = self.attn_processors | |
| for module in self.modules(): | |
| if isinstance(module, Attention): | |
| module.fuse_projections(fuse=True) | |
| self.set_attn_processor(FusedJointAttnProcessor2_0()) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
| def unfuse_qkv_projections(self): | |
| """Disables the fused QKV projection if enabled. | |
| <Tip warning={true}> | |
| This API is 🧪 experimental. | |
| </Tip> | |
| """ | |
| if self.original_attn_processors is not None: | |
| self.set_attn_processor(self.original_attn_processors) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if hasattr(module, "gradient_checkpointing"): | |
| module.gradient_checkpointing = value | |
| def from_transformer(cls, transformer, num_layers=12, load_weights_from_transformer=True): | |
| config = transformer.config | |
| config["num_layers"] = num_layers or config.num_layers | |
| controlnet = cls(**config) | |
| if load_weights_from_transformer: | |
| controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict()) | |
| controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict()) | |
| controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict()) | |
| controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False) | |
| controlnet.pos_embed_input = zero_module(controlnet.pos_embed_input) | |
| return controlnet | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| controlnet_cond: torch.Tensor, | |
| conditioning_scale: float = 1.0, | |
| encoder_hidden_states: torch.FloatTensor = None, | |
| pooled_projections: torch.FloatTensor = None, | |
| timestep: torch.LongTensor = None, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| return_dict: bool = True, | |
| ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: | |
| """ | |
| The [`SD3Transformer2DModel`] forward method. | |
| Args: | |
| hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): | |
| Input `hidden_states`. | |
| controlnet_cond (`torch.Tensor`): | |
| The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. | |
| conditioning_scale (`float`, defaults to `1.0`): | |
| The scale factor for ControlNet outputs. | |
| encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): | |
| Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. | |
| pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected | |
| from the embeddings of input conditions. | |
| timestep ( `torch.LongTensor`): | |
| Used to indicate denoising step. | |
| joint_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain | |
| tuple. | |
| Returns: | |
| If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
| `tuple` where the first element is the sample tensor. | |
| """ | |
| if joint_attention_kwargs is not None: | |
| joint_attention_kwargs = joint_attention_kwargs.copy() | |
| lora_scale = joint_attention_kwargs.pop("scale", 1.0) | |
| else: | |
| lora_scale = 1.0 | |
| if USE_PEFT_BACKEND: | |
| # weight the lora layers by setting `lora_scale` for each PEFT layer | |
| scale_lora_layers(self, lora_scale) | |
| else: | |
| if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: | |
| logger.warning( | |
| "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." | |
| ) | |
| hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too. | |
| temb = self.time_text_embed(timestep, pooled_projections) | |
| encoder_hidden_states = self.context_embedder(encoder_hidden_states) | |
| # add | |
| hidden_states = hidden_states + self.pos_embed_input(controlnet_cond) | |
| block_res_samples = () | |
| for block in self.transformer_blocks: | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| encoder_hidden_states, | |
| temb, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| encoder_hidden_states, hidden_states = block( | |
| hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb | |
| ) | |
| block_res_samples = block_res_samples + (hidden_states,) | |
| controlnet_block_res_samples = () | |
| for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks): | |
| block_res_sample = controlnet_block(block_res_sample) | |
| controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,) | |
| # 6. scaling | |
| controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples] | |
| if USE_PEFT_BACKEND: | |
| # remove `lora_scale` from each PEFT layer | |
| unscale_lora_layers(self, lora_scale) | |
| if not return_dict: | |
| return (controlnet_block_res_samples,) | |
| return SD3ControlNetOutput(controlnet_block_samples=controlnet_block_res_samples) | |
| class SD3MultiControlNetModel(ModelMixin): | |
| r""" | |
| `SD3ControlNetModel` wrapper class for Multi-SD3ControlNet | |
| This module is a wrapper for multiple instances of the `SD3ControlNetModel`. The `forward()` API is designed to be | |
| compatible with `SD3ControlNetModel`. | |
| Args: | |
| controlnets (`List[SD3ControlNetModel]`): | |
| Provides additional conditioning to the unet during the denoising process. You must set multiple | |
| `SD3ControlNetModel` as a list. | |
| """ | |
| def __init__(self, controlnets): | |
| super().__init__() | |
| self.nets = nn.ModuleList(controlnets) | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| controlnet_cond: List[torch.tensor], | |
| conditioning_scale: List[float], | |
| pooled_projections: torch.FloatTensor, | |
| encoder_hidden_states: torch.FloatTensor = None, | |
| timestep: torch.LongTensor = None, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| return_dict: bool = True, | |
| ) -> Union[SD3ControlNetOutput, Tuple]: | |
| for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)): | |
| block_samples = controlnet( | |
| hidden_states=hidden_states, | |
| timestep=timestep, | |
| encoder_hidden_states=encoder_hidden_states, | |
| pooled_projections=pooled_projections, | |
| controlnet_cond=image, | |
| conditioning_scale=scale, | |
| joint_attention_kwargs=joint_attention_kwargs, | |
| return_dict=return_dict, | |
| ) | |
| # merge samples | |
| if i == 0: | |
| control_block_samples = block_samples | |
| else: | |
| control_block_samples = [ | |
| control_block_sample + block_sample | |
| for control_block_sample, block_sample in zip(control_block_samples[0], block_samples[0]) | |
| ] | |
| control_block_samples = (tuple(control_block_samples),) | |
| return control_block_samples | |