Spaces:
Running
Running
| # Copyright 2024 Katherine Crowson and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import math | |
| from dataclasses import dataclass | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from ..configuration_utils import ConfigMixin, register_to_config | |
| from ..utils import BaseOutput, logging | |
| from ..utils.torch_utils import randn_tensor | |
| from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerDiscrete | |
| class EulerDiscreteSchedulerOutput(BaseOutput): | |
| """ | |
| Output class for the scheduler's `step` function output. | |
| Args: | |
| prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
| denoising loop. | |
| pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| The predicted denoised sample `(x_{0})` based on the model output from the current timestep. | |
| `pred_original_sample` can be used to preview progress or for guidance. | |
| """ | |
| prev_sample: torch.Tensor | |
| pred_original_sample: Optional[torch.Tensor] = None | |
| # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar | |
| def betas_for_alpha_bar( | |
| num_diffusion_timesteps, | |
| max_beta=0.999, | |
| alpha_transform_type="cosine", | |
| ): | |
| """ | |
| Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | |
| (1-beta) over time from t = [0,1]. | |
| Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | |
| to that part of the diffusion process. | |
| Args: | |
| num_diffusion_timesteps (`int`): the number of betas to produce. | |
| max_beta (`float`): the maximum beta to use; use values lower than 1 to | |
| prevent singularities. | |
| alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. | |
| Choose from `cosine` or `exp` | |
| Returns: | |
| betas (`np.ndarray`): the betas used by the scheduler to step the model outputs | |
| """ | |
| if alpha_transform_type == "cosine": | |
| def alpha_bar_fn(t): | |
| return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 | |
| elif alpha_transform_type == "exp": | |
| def alpha_bar_fn(t): | |
| return math.exp(t * -12.0) | |
| else: | |
| raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}") | |
| betas = [] | |
| for i in range(num_diffusion_timesteps): | |
| t1 = i / num_diffusion_timesteps | |
| t2 = (i + 1) / num_diffusion_timesteps | |
| betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) | |
| return torch.tensor(betas, dtype=torch.float32) | |
| # Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr | |
| def rescale_zero_terminal_snr(betas): | |
| """ | |
| Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1) | |
| Args: | |
| betas (`torch.Tensor`): | |
| the betas that the scheduler is being initialized with. | |
| Returns: | |
| `torch.Tensor`: rescaled betas with zero terminal SNR | |
| """ | |
| # Convert betas to alphas_bar_sqrt | |
| alphas = 1.0 - betas | |
| alphas_cumprod = torch.cumprod(alphas, dim=0) | |
| alphas_bar_sqrt = alphas_cumprod.sqrt() | |
| # Store old values. | |
| alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() | |
| alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() | |
| # Shift so the last timestep is zero. | |
| alphas_bar_sqrt -= alphas_bar_sqrt_T | |
| # Scale so the first timestep is back to the old value. | |
| alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) | |
| # Convert alphas_bar_sqrt to betas | |
| alphas_bar = alphas_bar_sqrt**2 # Revert sqrt | |
| alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod | |
| alphas = torch.cat([alphas_bar[0:1], alphas]) | |
| betas = 1 - alphas | |
| return betas | |
| class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin): | |
| """ | |
| Euler scheduler. | |
| This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
| methods the library implements for all schedulers such as loading and saving. | |
| Args: | |
| num_train_timesteps (`int`, defaults to 1000): | |
| The number of diffusion steps to train the model. | |
| beta_start (`float`, defaults to 0.0001): | |
| The starting `beta` value of inference. | |
| beta_end (`float`, defaults to 0.02): | |
| The final `beta` value. | |
| beta_schedule (`str`, defaults to `"linear"`): | |
| The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | |
| `linear` or `scaled_linear`. | |
| trained_betas (`np.ndarray`, *optional*): | |
| Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. | |
| prediction_type (`str`, defaults to `epsilon`, *optional*): | |
| Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), | |
| `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen | |
| Video](https://imagen.research.google/video/paper.pdf) paper). | |
| interpolation_type(`str`, defaults to `"linear"`, *optional*): | |
| The interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be on of | |
| `"linear"` or `"log_linear"`. | |
| use_karras_sigmas (`bool`, *optional*, defaults to `False`): | |
| Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`, | |
| the sigmas are determined according to a sequence of noise levels {σi}. | |
| timestep_spacing (`str`, defaults to `"linspace"`): | |
| The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and | |
| Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. | |
| steps_offset (`int`, defaults to 0): | |
| An offset added to the inference steps, as required by some model families. | |
| rescale_betas_zero_snr (`bool`, defaults to `False`): | |
| Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and | |
| dark samples instead of limiting it to samples with medium brightness. Loosely related to | |
| [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). | |
| final_sigmas_type (`str`, defaults to `"zero"`): | |
| The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final | |
| sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0. | |
| """ | |
| _compatibles = [e.name for e in KarrasDiffusionSchedulers] | |
| order = 1 | |
| def __init__( | |
| self, | |
| num_train_timesteps: int = 1000, | |
| beta_start: float = 0.0001, | |
| beta_end: float = 0.02, | |
| beta_schedule: str = "linear", | |
| trained_betas: Optional[Union[np.ndarray, List[float]]] = None, | |
| prediction_type: str = "epsilon", | |
| interpolation_type: str = "linear", | |
| use_karras_sigmas: Optional[bool] = False, | |
| sigma_min: Optional[float] = None, | |
| sigma_max: Optional[float] = None, | |
| timestep_spacing: str = "linspace", | |
| timestep_type: str = "discrete", # can be "discrete" or "continuous" | |
| steps_offset: int = 0, | |
| rescale_betas_zero_snr: bool = False, | |
| final_sigmas_type: str = "zero", # can be "zero" or "sigma_min" | |
| ): | |
| if trained_betas is not None: | |
| self.betas = torch.tensor(trained_betas, dtype=torch.float32) | |
| elif beta_schedule == "linear": | |
| self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | |
| elif beta_schedule == "scaled_linear": | |
| # this schedule is very specific to the latent diffusion model. | |
| self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | |
| elif beta_schedule == "squaredcos_cap_v2": | |
| # Glide cosine schedule | |
| self.betas = betas_for_alpha_bar(num_train_timesteps) | |
| else: | |
| raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") | |
| if rescale_betas_zero_snr: | |
| self.betas = rescale_zero_terminal_snr(self.betas) | |
| self.alphas = 1.0 - self.betas | |
| self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | |
| if rescale_betas_zero_snr: | |
| # Close to 0 without being 0 so first sigma is not inf | |
| # FP16 smallest positive subnormal works well here | |
| self.alphas_cumprod[-1] = 2**-24 | |
| sigmas = (((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5).flip(0) | |
| timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy() | |
| timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) | |
| # setable values | |
| self.num_inference_steps = None | |
| # TODO: Support the full EDM scalings for all prediction types and timestep types | |
| if timestep_type == "continuous" and prediction_type == "v_prediction": | |
| self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas]) | |
| else: | |
| self.timesteps = timesteps | |
| self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) | |
| self.is_scale_input_called = False | |
| self.use_karras_sigmas = use_karras_sigmas | |
| self._step_index = None | |
| self._begin_index = None | |
| self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
| def init_noise_sigma(self): | |
| # standard deviation of the initial noise distribution | |
| max_sigma = max(self.sigmas) if isinstance(self.sigmas, list) else self.sigmas.max() | |
| if self.config.timestep_spacing in ["linspace", "trailing"]: | |
| return max_sigma | |
| return (max_sigma**2 + 1) ** 0.5 | |
| def step_index(self): | |
| """ | |
| The index counter for current timestep. It will increase 1 after each scheduler step. | |
| """ | |
| return self._step_index | |
| def begin_index(self): | |
| """ | |
| The index for the first timestep. It should be set from pipeline with `set_begin_index` method. | |
| """ | |
| return self._begin_index | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index | |
| def set_begin_index(self, begin_index: int = 0): | |
| """ | |
| Sets the begin index for the scheduler. This function should be run from pipeline before the inference. | |
| Args: | |
| begin_index (`int`): | |
| The begin index for the scheduler. | |
| """ | |
| self._begin_index = begin_index | |
| def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: | |
| """ | |
| Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
| current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. | |
| Args: | |
| sample (`torch.Tensor`): | |
| The input sample. | |
| timestep (`int`, *optional*): | |
| The current timestep in the diffusion chain. | |
| Returns: | |
| `torch.Tensor`: | |
| A scaled input sample. | |
| """ | |
| if self.step_index is None: | |
| self._init_step_index(timestep) | |
| sigma = self.sigmas[self.step_index] | |
| sample = sample / ((sigma**2 + 1) ** 0.5) | |
| self.is_scale_input_called = True | |
| return sample | |
| def set_timesteps( | |
| self, | |
| num_inference_steps: int = None, | |
| device: Union[str, torch.device] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| ): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
| Args: | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to support arbitrary timesteps schedule. If `None`, timesteps will be generated | |
| based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps` and `sigmas` | |
| must be `None`, and `timestep_spacing` attribute will be ignored. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to support arbitrary timesteps schedule schedule. If `None`, timesteps and sigmas | |
| will be generated based on the relevant scheduler attributes. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`, and the timesteps will be generated based on the | |
| custom sigmas schedule. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` should be set.") | |
| if num_inference_steps is None and timesteps is None and sigmas is None: | |
| raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps` or `sigmas.") | |
| if num_inference_steps is not None and (timesteps is not None or sigmas is not None): | |
| raise ValueError("Can only pass one of `num_inference_steps` or `timesteps` or `sigmas`.") | |
| if timesteps is not None and self.config.use_karras_sigmas: | |
| raise ValueError("Cannot set `timesteps` with `config.use_karras_sigmas = True`.") | |
| if ( | |
| timesteps is not None | |
| and self.config.timestep_type == "continuous" | |
| and self.config.prediction_type == "v_prediction" | |
| ): | |
| raise ValueError( | |
| "Cannot set `timesteps` with `config.timestep_type = 'continuous'` and `config.prediction_type = 'v_prediction'`." | |
| ) | |
| if num_inference_steps is None: | |
| num_inference_steps = len(timesteps) if timesteps is not None else len(sigmas) - 1 | |
| self.num_inference_steps = num_inference_steps | |
| if sigmas is not None: | |
| log_sigmas = np.log(np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)) | |
| sigmas = np.array(sigmas).astype(np.float32) | |
| timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas[:-1]]) | |
| else: | |
| if timesteps is not None: | |
| timesteps = np.array(timesteps).astype(np.float32) | |
| else: | |
| # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 | |
| if self.config.timestep_spacing == "linspace": | |
| timesteps = np.linspace( | |
| 0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32 | |
| )[::-1].copy() | |
| elif self.config.timestep_spacing == "leading": | |
| step_ratio = self.config.num_train_timesteps // self.num_inference_steps | |
| # creates integer timesteps by multiplying by ratio | |
| # casting to int to avoid issues when num_inference_step is power of 3 | |
| timesteps = ( | |
| (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32) | |
| ) | |
| timesteps += self.config.steps_offset | |
| elif self.config.timestep_spacing == "trailing": | |
| step_ratio = self.config.num_train_timesteps / self.num_inference_steps | |
| # creates integer timesteps by multiplying by ratio | |
| # casting to int to avoid issues when num_inference_step is power of 3 | |
| timesteps = ( | |
| (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32) | |
| ) | |
| timesteps -= 1 | |
| else: | |
| raise ValueError( | |
| f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." | |
| ) | |
| sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | |
| log_sigmas = np.log(sigmas) | |
| if self.config.interpolation_type == "linear": | |
| sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) | |
| elif self.config.interpolation_type == "log_linear": | |
| sigmas = torch.linspace(np.log(sigmas[-1]), np.log(sigmas[0]), num_inference_steps + 1).exp().numpy() | |
| else: | |
| raise ValueError( | |
| f"{self.config.interpolation_type} is not implemented. Please specify interpolation_type to either" | |
| " 'linear' or 'log_linear'" | |
| ) | |
| if self.config.use_karras_sigmas: | |
| sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps) | |
| timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) | |
| if self.config.final_sigmas_type == "sigma_min": | |
| sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5 | |
| elif self.config.final_sigmas_type == "zero": | |
| sigma_last = 0 | |
| else: | |
| raise ValueError( | |
| f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}" | |
| ) | |
| sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32) | |
| sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) | |
| # TODO: Support the full EDM scalings for all prediction types and timestep types | |
| if self.config.timestep_type == "continuous" and self.config.prediction_type == "v_prediction": | |
| self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas[:-1]]).to(device=device) | |
| else: | |
| self.timesteps = torch.from_numpy(timesteps.astype(np.float32)).to(device=device) | |
| self._step_index = None | |
| self._begin_index = None | |
| self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
| def _sigma_to_t(self, sigma, log_sigmas): | |
| # get log sigma | |
| log_sigma = np.log(np.maximum(sigma, 1e-10)) | |
| # get distribution | |
| dists = log_sigma - log_sigmas[:, np.newaxis] | |
| # get sigmas range | |
| low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) | |
| high_idx = low_idx + 1 | |
| low = log_sigmas[low_idx] | |
| high = log_sigmas[high_idx] | |
| # interpolate sigmas | |
| w = (low - log_sigma) / (low - high) | |
| w = np.clip(w, 0, 1) | |
| # transform interpolation to time range | |
| t = (1 - w) * low_idx + w * high_idx | |
| t = t.reshape(sigma.shape) | |
| return t | |
| # Copied from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17 | |
| def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor: | |
| """Constructs the noise schedule of Karras et al. (2022).""" | |
| # Hack to make sure that other schedulers which copy this function don't break | |
| # TODO: Add this logic to the other schedulers | |
| if hasattr(self.config, "sigma_min"): | |
| sigma_min = self.config.sigma_min | |
| else: | |
| sigma_min = None | |
| if hasattr(self.config, "sigma_max"): | |
| sigma_max = self.config.sigma_max | |
| else: | |
| sigma_max = None | |
| sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() | |
| sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() | |
| rho = 7.0 # 7.0 is the value used in the paper | |
| ramp = np.linspace(0, 1, num_inference_steps) | |
| min_inv_rho = sigma_min ** (1 / rho) | |
| max_inv_rho = sigma_max ** (1 / rho) | |
| sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho | |
| return sigmas | |
| def index_for_timestep(self, timestep, schedule_timesteps=None): | |
| if schedule_timesteps is None: | |
| schedule_timesteps = self.timesteps | |
| indices = (schedule_timesteps == timestep).nonzero() | |
| # The sigma index that is taken for the **very** first `step` | |
| # is always the second index (or the last index if there is only 1) | |
| # This way we can ensure we don't accidentally skip a sigma in | |
| # case we start in the middle of the denoising schedule (e.g. for image-to-image) | |
| pos = 1 if len(indices) > 1 else 0 | |
| return indices[pos].item() | |
| def _init_step_index(self, timestep): | |
| if self.begin_index is None: | |
| if isinstance(timestep, torch.Tensor): | |
| timestep = timestep.to(self.timesteps.device) | |
| self._step_index = self.index_for_timestep(timestep) | |
| else: | |
| self._step_index = self._begin_index | |
| def step( | |
| self, | |
| model_output: torch.Tensor, | |
| timestep: Union[float, torch.Tensor], | |
| sample: torch.Tensor, | |
| s_churn: float = 0.0, | |
| s_tmin: float = 0.0, | |
| s_tmax: float = float("inf"), | |
| s_noise: float = 1.0, | |
| noise: Optional[torch.Tensor] = None, | |
| generator: Optional[torch.Generator] = None, | |
| return_dict: bool = True, | |
| ) -> Union[EulerDiscreteSchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.Tensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`float`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.Tensor`): | |
| A current instance of a sample created by the diffusion process. | |
| s_churn (`float`): | |
| s_tmin (`float`): | |
| s_tmax (`float`): | |
| s_noise (`float`, defaults to 1.0): | |
| Scaling factor for noise added to the sample. | |
| noise (`torch.Tensor`, *optional*): | |
| Pre-generated noise. if None, it will be generated by the random generator | |
| generator (`torch.Generator`, *optional*): | |
| A random number generator. | |
| return_dict (`bool`): | |
| Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or | |
| tuple. | |
| Returns: | |
| [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is | |
| returned, otherwise a tuple is returned where the first element is the sample tensor. | |
| """ | |
| if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)): | |
| raise ValueError( | |
| ( | |
| "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" | |
| " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" | |
| " one of the `scheduler.timesteps` as a timestep." | |
| ), | |
| ) | |
| if not self.is_scale_input_called: | |
| logger.warning( | |
| "The `scale_model_input` function should be called before `step` to ensure correct denoising. " | |
| "See `StableDiffusionPipeline` for a usage example." | |
| ) | |
| if self.step_index is None: | |
| self._init_step_index(timestep) | |
| # Upcast to avoid precision issues when computing prev_sample | |
| sample = sample.to(torch.float32) | |
| sigma = self.sigmas[self.step_index] | |
| gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 | |
| if noise is None: | |
| noise = randn_tensor( | |
| model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator | |
| ) | |
| eps = noise * s_noise | |
| sigma_hat = sigma * (gamma + 1) | |
| if gamma > 0: | |
| sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 | |
| # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | |
| # NOTE: "original_sample" should not be an expected prediction_type but is left in for | |
| # backwards compatibility | |
| if self.config.prediction_type == "original_sample" or self.config.prediction_type == "sample": | |
| pred_original_sample = model_output | |
| elif self.config.prediction_type == "epsilon": | |
| pred_original_sample = sample - sigma_hat * model_output | |
| elif self.config.prediction_type == "v_prediction": | |
| # denoised = model_output * c_out + input * c_skip | |
| pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" | |
| ) | |
| # 2. Convert to an ODE derivative | |
| derivative = (sample - pred_original_sample) / sigma_hat | |
| dt = self.sigmas[self.step_index + 1] - sigma_hat | |
| prev_sample = sample + derivative * dt | |
| # Cast sample back to model compatible dtype | |
| prev_sample = prev_sample.to(model_output.dtype) | |
| # upon completion increase step index by one | |
| self._step_index += 1 | |
| if not return_dict: | |
| return (prev_sample,) | |
| return EulerDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) | |
| def add_noise( | |
| self, | |
| original_samples: torch.Tensor, | |
| noise: torch.Tensor, | |
| timesteps: torch.Tensor, | |
| ) -> torch.Tensor: | |
| # Make sure sigmas and timesteps have the same device and dtype as original_samples | |
| sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) | |
| if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): | |
| # mps does not support float64 | |
| schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) | |
| timesteps = timesteps.to(original_samples.device, dtype=torch.float32) | |
| else: | |
| schedule_timesteps = self.timesteps.to(original_samples.device) | |
| timesteps = timesteps.to(original_samples.device) | |
| # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index | |
| if self.begin_index is None: | |
| step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] | |
| elif self.step_index is not None: | |
| # add_noise is called after first denoising step (for inpainting) | |
| step_indices = [self.step_index] * timesteps.shape[0] | |
| else: | |
| # add noise is called before first denoising step to create initial latent(img2img) | |
| step_indices = [self.begin_index] * timesteps.shape[0] | |
| sigma = sigmas[step_indices].flatten() | |
| while len(sigma.shape) < len(original_samples.shape): | |
| sigma = sigma.unsqueeze(-1) | |
| noisy_samples = original_samples + noise * sigma | |
| return noisy_samples | |
| def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor: | |
| if ( | |
| isinstance(timesteps, int) | |
| or isinstance(timesteps, torch.IntTensor) | |
| or isinstance(timesteps, torch.LongTensor) | |
| ): | |
| raise ValueError( | |
| ( | |
| "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" | |
| " `EulerDiscreteScheduler.get_velocity()` is not supported. Make sure to pass" | |
| " one of the `scheduler.timesteps` as a timestep." | |
| ), | |
| ) | |
| if sample.device.type == "mps" and torch.is_floating_point(timesteps): | |
| # mps does not support float64 | |
| schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32) | |
| timesteps = timesteps.to(sample.device, dtype=torch.float32) | |
| else: | |
| schedule_timesteps = self.timesteps.to(sample.device) | |
| timesteps = timesteps.to(sample.device) | |
| step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] | |
| alphas_cumprod = self.alphas_cumprod.to(sample) | |
| sqrt_alpha_prod = alphas_cumprod[step_indices] ** 0.5 | |
| sqrt_alpha_prod = sqrt_alpha_prod.flatten() | |
| while len(sqrt_alpha_prod.shape) < len(sample.shape): | |
| sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | |
| sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[step_indices]) ** 0.5 | |
| sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | |
| while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): | |
| sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | |
| velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample | |
| return velocity | |
| def __len__(self): | |
| return self.config.num_train_timesteps | |