Spaces:
Sleeping
Sleeping
| # Copyright 2024 Katherine Crowson and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import math | |
| from dataclasses import dataclass | |
| from typing import Optional, Tuple, Union | |
| import torch | |
| from ..configuration_utils import ConfigMixin, register_to_config | |
| from ..utils import BaseOutput, logging | |
| from ..utils.torch_utils import randn_tensor | |
| from .scheduling_utils import SchedulerMixin | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerDiscrete | |
| class EDMEulerSchedulerOutput(BaseOutput): | |
| """ | |
| Output class for the scheduler's `step` function output. | |
| Args: | |
| prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
| denoising loop. | |
| pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| The predicted denoised sample `(x_{0})` based on the model output from the current timestep. | |
| `pred_original_sample` can be used to preview progress or for guidance. | |
| """ | |
| prev_sample: torch.Tensor | |
| pred_original_sample: Optional[torch.Tensor] = None | |
| class EDMEulerScheduler(SchedulerMixin, ConfigMixin): | |
| """ | |
| Implements the Euler scheduler in EDM formulation as presented in Karras et al. 2022 [1]. | |
| [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." | |
| https://arxiv.org/abs/2206.00364 | |
| This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
| methods the library implements for all schedulers such as loading and saving. | |
| Args: | |
| sigma_min (`float`, *optional*, defaults to 0.002): | |
| Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the EDM paper [1]; a reasonable | |
| range is [0, 10]. | |
| sigma_max (`float`, *optional*, defaults to 80.0): | |
| Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the EDM paper [1]; a reasonable | |
| range is [0.2, 80.0]. | |
| sigma_data (`float`, *optional*, defaults to 0.5): | |
| The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1]. | |
| sigma_schedule (`str`, *optional*, defaults to `karras`): | |
| Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper | |
| (https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was | |
| incorporated in this model: https://huggingface.co/stabilityai/cosxl. | |
| num_train_timesteps (`int`, defaults to 1000): | |
| The number of diffusion steps to train the model. | |
| prediction_type (`str`, defaults to `epsilon`, *optional*): | |
| Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), | |
| `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen | |
| Video](https://imagen.research.google/video/paper.pdf) paper). | |
| rho (`float`, *optional*, defaults to 7.0): | |
| The rho parameter used for calculating the Karras sigma schedule, which is set to 7.0 in the EDM paper [1]. | |
| """ | |
| _compatibles = [] | |
| order = 1 | |
| def __init__( | |
| self, | |
| sigma_min: float = 0.002, | |
| sigma_max: float = 80.0, | |
| sigma_data: float = 0.5, | |
| sigma_schedule: str = "karras", | |
| num_train_timesteps: int = 1000, | |
| prediction_type: str = "epsilon", | |
| rho: float = 7.0, | |
| ): | |
| if sigma_schedule not in ["karras", "exponential"]: | |
| raise ValueError(f"Wrong value for provided for `{sigma_schedule=}`.`") | |
| # setable values | |
| self.num_inference_steps = None | |
| ramp = torch.linspace(0, 1, num_train_timesteps) | |
| if sigma_schedule == "karras": | |
| sigmas = self._compute_karras_sigmas(ramp) | |
| elif sigma_schedule == "exponential": | |
| sigmas = self._compute_exponential_sigmas(ramp) | |
| self.timesteps = self.precondition_noise(sigmas) | |
| self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) | |
| self.is_scale_input_called = False | |
| self._step_index = None | |
| self._begin_index = None | |
| self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
| def init_noise_sigma(self): | |
| # standard deviation of the initial noise distribution | |
| return (self.config.sigma_max**2 + 1) ** 0.5 | |
| def step_index(self): | |
| """ | |
| The index counter for current timestep. It will increase 1 after each scheduler step. | |
| """ | |
| return self._step_index | |
| def begin_index(self): | |
| """ | |
| The index for the first timestep. It should be set from pipeline with `set_begin_index` method. | |
| """ | |
| return self._begin_index | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index | |
| def set_begin_index(self, begin_index: int = 0): | |
| """ | |
| Sets the begin index for the scheduler. This function should be run from pipeline before the inference. | |
| Args: | |
| begin_index (`int`): | |
| The begin index for the scheduler. | |
| """ | |
| self._begin_index = begin_index | |
| def precondition_inputs(self, sample, sigma): | |
| c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5) | |
| scaled_sample = sample * c_in | |
| return scaled_sample | |
| def precondition_noise(self, sigma): | |
| if not isinstance(sigma, torch.Tensor): | |
| sigma = torch.tensor([sigma]) | |
| c_noise = 0.25 * torch.log(sigma) | |
| return c_noise | |
| def precondition_outputs(self, sample, model_output, sigma): | |
| sigma_data = self.config.sigma_data | |
| c_skip = sigma_data**2 / (sigma**2 + sigma_data**2) | |
| if self.config.prediction_type == "epsilon": | |
| c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 | |
| elif self.config.prediction_type == "v_prediction": | |
| c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 | |
| else: | |
| raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.") | |
| denoised = c_skip * sample + c_out * model_output | |
| return denoised | |
| def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: | |
| """ | |
| Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
| current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. | |
| Args: | |
| sample (`torch.Tensor`): | |
| The input sample. | |
| timestep (`int`, *optional*): | |
| The current timestep in the diffusion chain. | |
| Returns: | |
| `torch.Tensor`: | |
| A scaled input sample. | |
| """ | |
| if self.step_index is None: | |
| self._init_step_index(timestep) | |
| sigma = self.sigmas[self.step_index] | |
| sample = self.precondition_inputs(sample, sigma) | |
| self.is_scale_input_called = True | |
| return sample | |
| def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
| Args: | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| """ | |
| self.num_inference_steps = num_inference_steps | |
| ramp = torch.linspace(0, 1, self.num_inference_steps) | |
| if self.config.sigma_schedule == "karras": | |
| sigmas = self._compute_karras_sigmas(ramp) | |
| elif self.config.sigma_schedule == "exponential": | |
| sigmas = self._compute_exponential_sigmas(ramp) | |
| sigmas = sigmas.to(dtype=torch.float32, device=device) | |
| self.timesteps = self.precondition_noise(sigmas) | |
| self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) | |
| self._step_index = None | |
| self._begin_index = None | |
| self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
| # Taken from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17 | |
| def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor: | |
| """Constructs the noise schedule of Karras et al. (2022).""" | |
| sigma_min = sigma_min or self.config.sigma_min | |
| sigma_max = sigma_max or self.config.sigma_max | |
| rho = self.config.rho | |
| min_inv_rho = sigma_min ** (1 / rho) | |
| max_inv_rho = sigma_max ** (1 / rho) | |
| sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho | |
| return sigmas | |
| def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor: | |
| """Implementation closely follows k-diffusion. | |
| https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26 | |
| """ | |
| sigma_min = sigma_min or self.config.sigma_min | |
| sigma_max = sigma_max or self.config.sigma_max | |
| sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0) | |
| return sigmas | |
| # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep | |
| def index_for_timestep(self, timestep, schedule_timesteps=None): | |
| if schedule_timesteps is None: | |
| schedule_timesteps = self.timesteps | |
| indices = (schedule_timesteps == timestep).nonzero() | |
| # The sigma index that is taken for the **very** first `step` | |
| # is always the second index (or the last index if there is only 1) | |
| # This way we can ensure we don't accidentally skip a sigma in | |
| # case we start in the middle of the denoising schedule (e.g. for image-to-image) | |
| pos = 1 if len(indices) > 1 else 0 | |
| return indices[pos].item() | |
| # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index | |
| def _init_step_index(self, timestep): | |
| if self.begin_index is None: | |
| if isinstance(timestep, torch.Tensor): | |
| timestep = timestep.to(self.timesteps.device) | |
| self._step_index = self.index_for_timestep(timestep) | |
| else: | |
| self._step_index = self._begin_index | |
| def step( | |
| self, | |
| model_output: torch.Tensor, | |
| timestep: Union[float, torch.Tensor], | |
| sample: torch.Tensor, | |
| s_churn: float = 0.0, | |
| s_tmin: float = 0.0, | |
| s_tmax: float = float("inf"), | |
| s_noise: float = 1.0, | |
| generator: Optional[torch.Generator] = None, | |
| return_dict: bool = True, | |
| ) -> Union[EDMEulerSchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.Tensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`float`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.Tensor`): | |
| A current instance of a sample created by the diffusion process. | |
| s_churn (`float`): | |
| s_tmin (`float`): | |
| s_tmax (`float`): | |
| s_noise (`float`, defaults to 1.0): | |
| Scaling factor for noise added to the sample. | |
| generator (`torch.Generator`, *optional*): | |
| A random number generator. | |
| return_dict (`bool`): | |
| Whether or not to return a [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or tuple. | |
| Returns: | |
| [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] is | |
| returned, otherwise a tuple is returned where the first element is the sample tensor. | |
| """ | |
| if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)): | |
| raise ValueError( | |
| ( | |
| "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" | |
| " `EDMEulerScheduler.step()` is not supported. Make sure to pass" | |
| " one of the `scheduler.timesteps` as a timestep." | |
| ), | |
| ) | |
| if not self.is_scale_input_called: | |
| logger.warning( | |
| "The `scale_model_input` function should be called before `step` to ensure correct denoising. " | |
| "See `StableDiffusionPipeline` for a usage example." | |
| ) | |
| if self.step_index is None: | |
| self._init_step_index(timestep) | |
| # Upcast to avoid precision issues when computing prev_sample | |
| sample = sample.to(torch.float32) | |
| sigma = self.sigmas[self.step_index] | |
| gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 | |
| noise = randn_tensor( | |
| model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator | |
| ) | |
| eps = noise * s_noise | |
| sigma_hat = sigma * (gamma + 1) | |
| if gamma > 0: | |
| sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 | |
| # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | |
| pred_original_sample = self.precondition_outputs(sample, model_output, sigma_hat) | |
| # 2. Convert to an ODE derivative | |
| derivative = (sample - pred_original_sample) / sigma_hat | |
| dt = self.sigmas[self.step_index + 1] - sigma_hat | |
| prev_sample = sample + derivative * dt | |
| # Cast sample back to model compatible dtype | |
| prev_sample = prev_sample.to(model_output.dtype) | |
| # upon completion increase step index by one | |
| self._step_index += 1 | |
| if not return_dict: | |
| return (prev_sample,) | |
| return EDMEulerSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) | |
| # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise | |
| def add_noise( | |
| self, | |
| original_samples: torch.Tensor, | |
| noise: torch.Tensor, | |
| timesteps: torch.Tensor, | |
| ) -> torch.Tensor: | |
| # Make sure sigmas and timesteps have the same device and dtype as original_samples | |
| sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) | |
| if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): | |
| # mps does not support float64 | |
| schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) | |
| timesteps = timesteps.to(original_samples.device, dtype=torch.float32) | |
| else: | |
| schedule_timesteps = self.timesteps.to(original_samples.device) | |
| timesteps = timesteps.to(original_samples.device) | |
| # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index | |
| if self.begin_index is None: | |
| step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] | |
| elif self.step_index is not None: | |
| # add_noise is called after first denoising step (for inpainting) | |
| step_indices = [self.step_index] * timesteps.shape[0] | |
| else: | |
| # add noise is called before first denoising step to create initial latent(img2img) | |
| step_indices = [self.begin_index] * timesteps.shape[0] | |
| sigma = sigmas[step_indices].flatten() | |
| while len(sigma.shape) < len(original_samples.shape): | |
| sigma = sigma.unsqueeze(-1) | |
| noisy_samples = original_samples + noise * sigma | |
| return noisy_samples | |
| def __len__(self): | |
| return self.config.num_train_timesteps | |