Spaces:
Running
Running
import cv2 | |
import math | |
import numpy as np | |
import os | |
import os.path as osp | |
import random | |
import time | |
import torch | |
from pathlib import Path | |
import albumentations | |
import torch.nn.functional as F | |
from torch.utils import data as data | |
from basicsr.utils import DiffJPEG | |
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels | |
from basicsr.data.transforms import augment | |
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor | |
from basicsr.utils.registry import DATASET_REGISTRY | |
from basicsr.utils.img_process_util import filter2D | |
from basicsr.data.transforms import paired_random_crop, random_crop | |
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt | |
from utils import util_image | |
def readline_txt(txt_file): | |
txt_file = [txt_file, ] if isinstance(txt_file, str) else txt_file | |
out = [] | |
for txt_file_current in txt_file: | |
with open(txt_file_current, 'r') as ff: | |
out.extend([x[:-1] for x in ff.readlines()]) | |
return out | |
class RealESRGANDataset(data.Dataset): | |
"""Dataset used for Real-ESRGAN model: | |
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data. | |
It loads gt (Ground-Truth) images, and augments them. | |
It also generates blur kernels and sinc kernels for generating low-quality images. | |
Note that the low-quality images are processed in tensors on GPUS for faster processing. | |
Args: | |
opt (dict): Config for train datasets. It contains the following keys: | |
dataroot_gt (str): Data root path for gt. | |
meta_info (str): Path for meta information file. | |
io_backend (dict): IO backend type and other kwarg. | |
use_hflip (bool): Use horizontal flips. | |
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation). | |
Please see more options in the codes. | |
""" | |
def __init__(self, opt, mode='training'): | |
super(RealESRGANDataset, self).__init__() | |
self.opt = opt | |
self.file_client = None | |
self.io_backend_opt = opt['io_backend'] | |
# file client (lmdb io backend) | |
self.image_paths = [] | |
self.text_paths = [] | |
self.moment_paths = [] | |
if opt.get('data_source', None) is not None: | |
for ii in range(len(opt['data_source'])): | |
configs = opt['data_source'].get(f'source{ii+1}') | |
root_path = Path(configs.root_path) | |
im_folder = root_path / configs.image_path | |
im_ext = configs.im_ext | |
image_stems = sorted([x.stem for x in im_folder.glob(f"*.{im_ext}")]) | |
if configs.get('length', None) is not None: | |
assert configs.length < len(image_stems) | |
image_stems = image_stems[:configs.length] | |
if configs.get("text_path", None) is not None: | |
text_folder = root_path / configs.text_path | |
text_stems = [x.stem for x in text_folder.glob("*.txt")] | |
image_stems = sorted(list(set(image_stems).intersection(set(text_stems)))) | |
self.text_paths.extend([str(text_folder / f"{x}.txt") for x in image_stems]) | |
else: | |
self.text_paths.extend([None, ] * len(image_stems)) | |
self.image_paths.extend([str(im_folder / f"{x}.{im_ext}") for x in image_stems]) | |
if configs.get("moment_path", None) is not None: | |
moment_folder = root_path / configs.moment_path | |
self.moment_paths.extend([str(moment_folder / f"{x}.npy") for x in image_stems]) | |
else: | |
self.moment_paths.extend([None, ] * len(image_stems)) | |
# blur settings for the first degradation | |
self.blur_kernel_size = opt['blur_kernel_size'] | |
self.kernel_list = opt['kernel_list'] | |
self.kernel_prob = opt['kernel_prob'] # a list for each kernel probability | |
self.blur_sigma = opt['blur_sigma'] | |
self.betag_range = opt['betag_range'] # betag used in generalized Gaussian blur kernels | |
self.betap_range = opt['betap_range'] # betap used in plateau blur kernels | |
self.sinc_prob = opt['sinc_prob'] # the probability for sinc filters | |
# blur settings for the second degradation | |
self.blur_kernel_size2 = opt['blur_kernel_size2'] | |
self.kernel_list2 = opt['kernel_list2'] | |
self.kernel_prob2 = opt['kernel_prob2'] | |
self.blur_sigma2 = opt['blur_sigma2'] | |
self.betag_range2 = opt['betag_range2'] | |
self.betap_range2 = opt['betap_range2'] | |
self.sinc_prob2 = opt['sinc_prob2'] | |
# a final sinc filter | |
self.final_sinc_prob = opt['final_sinc_prob'] | |
self.kernel_range1 = [x for x in range(3, opt['blur_kernel_size'], 2)] # kernel size ranges from 7 to 21 | |
self.kernel_range2 = [x for x in range(3, opt['blur_kernel_size2'], 2)] # kernel size ranges from 7 to 21 | |
# TODO: kernel range is now hard-coded, should be in the configure file | |
# convolving with pulse tensor brings no blurry effect | |
self.pulse_tensor = torch.zeros(opt['blur_kernel_size2'], opt['blur_kernel_size2']).float() | |
self.pulse_tensor[opt['blur_kernel_size2']//2, opt['blur_kernel_size2']//2] = 1 | |
self.mode = mode | |
def __getitem__(self, index): | |
if self.file_client is None: | |
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) | |
# -------------------------------- Load gt images -------------------------------- # | |
# Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32. | |
gt_path = self.image_paths[index] | |
# avoid errors caused by high latency in reading files | |
retry = 3 | |
while retry > 0: | |
try: | |
img_bytes = self.file_client.get(gt_path, 'gt') | |
img_gt = imfrombytes(img_bytes, float32=True) | |
except: | |
index = random.randint(0, self.__len__()) | |
gt_path = self.image_paths[index] | |
time.sleep(1) # sleep 1s for occasional server congestion | |
finally: | |
retry -= 1 | |
if self.mode == 'testing': | |
if not hasattr(self, 'test_aug'): | |
self.test_aug = albumentations.Compose([ | |
albumentations.SmallestMaxSize( | |
max_size=self.opt['gt_size'], | |
interpolation=cv2.INTER_AREA, | |
), | |
albumentations.CenterCrop(self.opt['gt_size'], self.opt['gt_size']), | |
]) | |
img_gt = self.test_aug(image=img_gt)['image'] | |
elif self.mode == 'training': | |
# -------------------- Do augmentation for training: flip, rotation -------------------- # | |
if self.opt['use_hflip'] or self.opt['use_rot']: | |
img_gt = augment(img_gt, self.opt['use_hflip'], self.opt['use_rot']) | |
h, w = img_gt.shape[0:2] | |
gt_size = self.opt['gt_size'] | |
# resize or pad | |
if not self.opt['random_crop']: | |
if not min(h, w) == gt_size: | |
if not hasattr(self, 'smallest_resizer'): | |
self.smallest_resizer = util_image.SmallestMaxSize( | |
max_size=gt_size, pass_resize=False, | |
) | |
img_gt = self.smallest_resizer(img_gt) | |
# center crop | |
if not hasattr(self, 'center_cropper'): | |
self.center_cropper = albumentations.CenterCrop(gt_size, gt_size) | |
img_gt = self.center_cropper(image=img_gt)['image'] | |
else: | |
img_gt = random_crop(img_gt, self.opt['gt_size']) | |
else: | |
raise ValueError(f'Unexpected value {self.mode} for mode parameter') | |
# ------------------------ Generate kernels (used in the first degradation) ------------------------ # | |
kernel_size = random.choice(self.kernel_range1) | |
if np.random.uniform() < self.opt['sinc_prob']: | |
# this sinc filter setting is for kernels ranging from [7, 21] | |
if kernel_size < 13: | |
omega_c = np.random.uniform(np.pi / 3, np.pi) | |
else: | |
omega_c = np.random.uniform(np.pi / 5, np.pi) | |
kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) | |
else: | |
kernel = random_mixed_kernels( | |
self.kernel_list, | |
self.kernel_prob, | |
kernel_size, | |
self.blur_sigma, | |
self.blur_sigma, [-math.pi, math.pi], | |
self.betag_range, | |
self.betap_range, | |
noise_range=None) | |
# pad kernel | |
pad_size = (self.blur_kernel_size - kernel_size) // 2 | |
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size))) | |
# ------------------------ Generate kernels (used in the second degradation) ------------------------ # | |
kernel_size = random.choice(self.kernel_range2) | |
if np.random.uniform() < self.opt['sinc_prob2']: | |
if kernel_size < 13: | |
omega_c = np.random.uniform(np.pi / 3, np.pi) | |
else: | |
omega_c = np.random.uniform(np.pi / 5, np.pi) | |
kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) | |
else: | |
kernel2 = random_mixed_kernels( | |
self.kernel_list2, | |
self.kernel_prob2, | |
kernel_size, | |
self.blur_sigma2, | |
self.blur_sigma2, [-math.pi, math.pi], | |
self.betag_range2, | |
self.betap_range2, | |
noise_range=None) | |
# pad kernel | |
pad_size = (self.blur_kernel_size2 - kernel_size) // 2 | |
kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size))) | |
# ------------------------------------- the final sinc kernel ------------------------------------- # | |
if np.random.uniform() < self.opt['final_sinc_prob']: | |
kernel_size = random.choice(self.kernel_range2) | |
omega_c = np.random.uniform(np.pi / 3, np.pi) | |
sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=self.blur_kernel_size2) | |
sinc_kernel = torch.FloatTensor(sinc_kernel) | |
else: | |
sinc_kernel = self.pulse_tensor | |
# BGR to RGB, HWC to CHW, numpy to tensor | |
img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0] | |
kernel = torch.FloatTensor(kernel) | |
kernel2 = torch.FloatTensor(kernel2) | |
if self.text_paths[index] is None or self.opt['random_crop']: | |
prompt = "" | |
else: | |
with open(self.text_paths[index], 'r') as ff: | |
prompt = ff.read() | |
if self.opt.max_token_length is not None: | |
prompt = prompt[:self.opt.max_token_length] | |
return_d = { | |
'gt': img_gt, | |
'gt_path': gt_path, | |
'txt': prompt, | |
'kernel1': kernel, | |
'kernel2': kernel2, | |
'sinc_kernel': sinc_kernel, | |
} | |
if self.moment_paths[index] is not None and (not self.opt['random_crop']): | |
return_d['gt_moment'] = np.load(self.moment_paths[index]) | |
return return_d | |
def __len__(self): | |
return len(self.image_paths) | |
def degrade_fun(self, conf_degradation, im_gt, kernel1, kernel2, sinc_kernel): | |
if not hasattr(self, 'jpeger'): | |
self.jpeger = DiffJPEG(differentiable=False) # simulate JPEG compression artifacts | |
ori_h, ori_w = im_gt.size()[2:4] | |
sf = conf_degradation.sf | |
# ----------------------- The first degradation process ----------------------- # | |
# blur | |
out = filter2D(im_gt, kernel1) | |
# random resize | |
updown_type = random.choices( | |
['up', 'down', 'keep'], | |
conf_degradation['resize_prob'], | |
)[0] | |
if updown_type == 'up': | |
scale = random.uniform(1, conf_degradation['resize_range'][1]) | |
elif updown_type == 'down': | |
scale = random.uniform(conf_degradation['resize_range'][0], 1) | |
else: | |
scale = 1 | |
mode = random.choice(['area', 'bilinear', 'bicubic']) | |
out = F.interpolate(out, scale_factor=scale, mode=mode) | |
# add noise | |
gray_noise_prob = conf_degradation['gray_noise_prob'] | |
if random.random() < conf_degradation['gaussian_noise_prob']: | |
out = random_add_gaussian_noise_pt( | |
out, | |
sigma_range=conf_degradation['noise_range'], | |
clip=True, | |
rounds=False, | |
gray_prob=gray_noise_prob, | |
) | |
else: | |
out = random_add_poisson_noise_pt( | |
out, | |
scale_range=conf_degradation['poisson_scale_range'], | |
gray_prob=gray_noise_prob, | |
clip=True, | |
rounds=False) | |
# JPEG compression | |
jpeg_p = out.new_zeros(out.size(0)).uniform_(*conf_degradation['jpeg_range']) | |
out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts | |
out = self.jpeger(out, quality=jpeg_p) | |
# ----------------------- The second degradation process ----------------------- # | |
# blur | |
if random.random() < conf_degradation['second_order_prob']: | |
if random.random() < conf_degradation['second_blur_prob']: | |
out = filter2D(out, kernel2) | |
# random resize | |
updown_type = random.choices( | |
['up', 'down', 'keep'], | |
conf_degradation['resize_prob2'], | |
)[0] | |
if updown_type == 'up': | |
scale = random.uniform(1, conf_degradation['resize_range2'][1]) | |
elif updown_type == 'down': | |
scale = random.uniform(conf_degradation['resize_range2'][0], 1) | |
else: | |
scale = 1 | |
mode = random.choice(['area', 'bilinear', 'bicubic']) | |
out = F.interpolate( | |
out, | |
size=(int(ori_h / sf * scale), int(ori_w / sf * scale)), | |
mode=mode, | |
) | |
# add noise | |
gray_noise_prob = conf_degradation['gray_noise_prob2'] | |
if random.random() < conf_degradation['gaussian_noise_prob2']: | |
out = random_add_gaussian_noise_pt( | |
out, | |
sigma_range=conf_degradation['noise_range2'], | |
clip=True, | |
rounds=False, | |
gray_prob=gray_noise_prob, | |
) | |
else: | |
out = random_add_poisson_noise_pt( | |
out, | |
scale_range=conf_degradation['poisson_scale_range2'], | |
gray_prob=gray_noise_prob, | |
clip=True, | |
rounds=False, | |
) | |
# JPEG compression + the final sinc filter | |
# We also need to resize images to desired sizes. We group [resize back + sinc filter] together | |
# as one operation. | |
# We consider two orders: | |
# 1. [resize back + sinc filter] + JPEG compression | |
# 2. JPEG compression + [resize back + sinc filter] | |
# Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines. | |
if random.random() < 0.5: | |
# resize back + the final sinc filter | |
mode = random.choice(['area', 'bilinear', 'bicubic']) | |
out = F.interpolate( | |
out, | |
size=(ori_h // sf, ori_w // sf), | |
mode=mode, | |
) | |
out = filter2D(out, sinc_kernel) | |
# JPEG compression | |
jpeg_p = out.new_zeros(out.size(0)).uniform_(*conf_degradation['jpeg_range2']) | |
out = torch.clamp(out, 0, 1) | |
out = self.jpeger(out, quality=jpeg_p) | |
else: | |
# JPEG compression | |
jpeg_p = out.new_zeros(out.size(0)).uniform_(*conf_degradation['jpeg_range2']) | |
out = torch.clamp(out, 0, 1) | |
out = self.jpeger(out, quality=jpeg_p) | |
# resize back + the final sinc filter | |
mode = random.choice(['area', 'bilinear', 'bicubic']) | |
out = F.interpolate( | |
out, | |
size=(ori_h // sf, ori_w // sf), | |
mode=mode, | |
) | |
out = filter2D(out, sinc_kernel) | |
# clamp and round | |
im_lq = torch.clamp((out * 255.0).round(), 0, 255) / 255. | |
return {'lq':im_lq.contiguous(), 'gt':im_gt} | |