qubvel-hf HF Staff commited on
Commit
7beae6a
·
1 Parent(s): 745226b

Add tracking

Browse files
Files changed (2) hide show
  1. app.py +114 -16
  2. requirements.txt +2 -1
app.py CHANGED
@@ -6,6 +6,7 @@ import logging
6
 
7
  import torch
8
  import spaces
 
9
  import numpy as np
10
  import gradio as gr
11
  import imageio.v3 as iio
@@ -61,13 +62,29 @@ BATCH_SIZE = 4
61
  ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"}
62
  VIDEO_OUTPUT_DIR = Path("static/videos")
63
  VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
 
 
 
 
 
 
 
64
  VIDEO_EXAMPLES = [
65
- {"path": "./examples/videos/dogs_running.mp4", "label": "Local Video"},
66
- {"path": "./examples/videos/traffic.mp4", "label": "Local Video"},
67
- {"path": "./examples/videos/fast_and_furious.mp4", "label": "Local Video"},
68
- {"path": "./examples/videos/break_dance.mp4", "label": "Local Video"},
69
  ]
70
 
 
 
 
 
 
 
 
 
 
71
  logging.basicConfig(
72
  level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
73
  )
@@ -88,12 +105,21 @@ def detect_objects(
88
  confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
89
  target_size: Optional[Tuple[int, int]] = None,
90
  batch_size: int = BATCH_SIZE,
 
91
  ):
92
 
93
  device = "cuda" if torch.cuda.is_available() else "cpu"
94
  model, image_processor = get_model_and_processor(checkpoint)
95
  model = model.to(device)
96
 
 
 
 
 
 
 
 
 
97
  if isinstance(images, np.ndarray) and images.ndim == 4:
98
  images = [x for x in images] # split video array into list of images
99
 
@@ -125,6 +151,9 @@ def detect_objects(
125
  # move results to cpu
126
  for i, result in enumerate(results):
127
  results[i] = {k: v.cpu() for k, v in result.items()}
 
 
 
128
 
129
  return results, model.config.id2label
130
 
@@ -201,9 +230,34 @@ def read_video_k_frames(video_path: str, k: int, read_every_i_frame: int = 1):
201
  return frames
202
 
203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204
  def process_video(
205
  video_path: str,
206
  checkpoint: str,
 
 
207
  confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
208
  progress: gr.Progress = gr.Progress(track_tqdm=True),
209
  ) -> str:
@@ -224,23 +278,51 @@ def process_video(
224
  frames = read_video_k_frames(video_path, n_frames_to_read, read_each_i_frame)
225
  frames = [cv2.resize(frame, (target_width, target_height), interpolation=cv2.INTER_CUBIC) for frame in frames]
226
 
227
- box_annotator = sv.BoxAnnotator(thickness=1)
228
- label_annotator = sv.LabelAnnotator(text_scale=0.5)
 
 
 
 
 
 
 
 
 
 
 
229
 
230
  results, id2label = detect_objects(
231
  images=np.array(frames),
232
  checkpoint=checkpoint,
233
  confidence_threshold=confidence_threshold,
234
  target_size=(target_height, target_width),
 
235
  )
236
 
 
237
  annotated_frames = []
238
- for frame, result in tqdm.tqdm(zip(frames, results), desc="Annotating frames", total=len(frames)):
239
- detections = sv.Detections.from_transformers(result, id2label=id2label)
240
- detections = detections.with_nms(threshold=0.95, class_agnostic=True)
241
- annotated_frame = box_annotator.annotate(scene=frame, detections=detections)
242
- annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections)
243
- annotated_frames.append(annotated_frame)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244
 
245
  output_filename = os.path.join(VIDEO_OUTPUT_DIR, f"output_{uuid.uuid4()}.mp4")
246
  iio.imwrite(output_filename, annotated_frames, fps=target_fps, codec="h264")
@@ -296,6 +378,18 @@ def create_video_inputs() -> List[gr.components.Component]:
296
  value=DEFAULT_CHECKPOINT,
297
  elem_classes="input-component",
298
  ),
 
 
 
 
 
 
 
 
 
 
 
 
299
  gr.Slider(
300
  minimum=0.1,
301
  maximum=1.0,
@@ -380,7 +474,7 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
380
  with gr.Row():
381
  with gr.Column(scale=1, min_width=300):
382
  with gr.Group():
383
- video_input, video_checkpoint, video_confidence_threshold = create_video_inputs()
384
  video_detect_button, video_clear_button = create_button_row()
385
  with gr.Column(scale=2):
386
  video_output = gr.Video(
@@ -391,10 +485,10 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
391
 
392
  gr.Examples(
393
  examples=[
394
- [example["path"], DEFAULT_CHECKPOINT, DEFAULT_CONFIDENCE_THRESHOLD]
395
  for example in VIDEO_EXAMPLES
396
  ],
397
- inputs=[video_input, video_checkpoint, video_confidence_threshold],
398
  outputs=[video_output],
399
  fn=process_video,
400
  cache_examples=False,
@@ -433,12 +527,16 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
433
  fn=lambda: (
434
  None,
435
  DEFAULT_CHECKPOINT,
 
 
436
  DEFAULT_CONFIDENCE_THRESHOLD,
437
  None,
438
  ),
439
  outputs=[
440
  video_input,
441
  video_checkpoint,
 
 
442
  video_confidence_threshold,
443
  video_output,
444
  ],
@@ -460,7 +558,7 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
460
  # Video detect button
461
  video_detect_button.click(
462
  fn=process_video,
463
- inputs=[video_input, video_checkpoint, video_confidence_threshold],
464
  outputs=[video_output],
465
  )
466
 
 
6
 
7
  import torch
8
  import spaces
9
+ import trackers
10
  import numpy as np
11
  import gradio as gr
12
  import imageio.v3 as iio
 
62
  ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"}
63
  VIDEO_OUTPUT_DIR = Path("static/videos")
64
  VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
65
+
66
+ class TrackingAlgorithm:
67
+ BYTETRACK = "ByteTrack (2021)"
68
+ DEEPSORT = "DeepSORT (2017)"
69
+ SORT = "SORT (2016)"
70
+
71
+ TRACKERS = [None, TrackingAlgorithm.BYTETRACK, TrackingAlgorithm.DEEPSORT, TrackingAlgorithm.SORT]
72
  VIDEO_EXAMPLES = [
73
+ {"path": "./examples/videos/dogs_running.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
74
+ {"path": "./examples/videos/traffic.mp4", "label": "Local Video", "tracker": TrackingAlgorithm.BYTETRACK, "classes": "car, truck, bus"},
75
+ {"path": "./examples/videos/fast_and_furious.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
76
+ {"path": "./examples/videos/break_dance.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
77
  ]
78
 
79
+
80
+ # Create a color palette for visualization
81
+ # These hex color codes define different colors for tracking different objects
82
+ color = sv.ColorPalette.from_hex([
83
+ "#ffff00", "#ff9b00", "#ff8080", "#ff66b2", "#ff66ff", "#b266ff",
84
+ "#9999ff", "#3399ff", "#66ffff", "#33ff99", "#66ff66", "#99ff00"
85
+ ])
86
+
87
+
88
  logging.basicConfig(
89
  level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
90
  )
 
105
  confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
106
  target_size: Optional[Tuple[int, int]] = None,
107
  batch_size: int = BATCH_SIZE,
108
+ classes: Optional[List[str]] = None,
109
  ):
110
 
111
  device = "cuda" if torch.cuda.is_available() else "cpu"
112
  model, image_processor = get_model_and_processor(checkpoint)
113
  model = model.to(device)
114
 
115
+ if classes is not None:
116
+ wrong_classes = [cls for cls in classes if cls not in model.config.label2id]
117
+ if wrong_classes:
118
+ gr.Warning(f"Classes not found in model config: {wrong_classes}")
119
+ keep_ids = [model.config.label2id[cls] for cls in classes if cls in model.config.label2id]
120
+ else:
121
+ keep_ids = None
122
+
123
  if isinstance(images, np.ndarray) and images.ndim == 4:
124
  images = [x for x in images] # split video array into list of images
125
 
 
151
  # move results to cpu
152
  for i, result in enumerate(results):
153
  results[i] = {k: v.cpu() for k, v in result.items()}
154
+ if keep_ids is not None:
155
+ keep = torch.isin(results[i]["labels"], torch.tensor(keep_ids))
156
+ results[i] = {k: v[keep] for k, v in results[i].items()}
157
 
158
  return results, model.config.id2label
159
 
 
230
  return frames
231
 
232
 
233
+ def get_tracker(tracker: str, fps: float):
234
+ if tracker == TrackingAlgorithm.SORT:
235
+ return trackers.SORTTracker(frame_rate=fps)
236
+ elif tracker == TrackingAlgorithm.DEEPSORT:
237
+ feature_extractor = trackers.DeepSORTFeatureExtractor.from_timm("mobilenetv4_conv_small.e1200_r224_in1k", device="cpu")
238
+ return trackers.DeepSORTTracker(feature_extractor, frame_rate=fps)
239
+ elif tracker == TrackingAlgorithm.BYTETRACK:
240
+ return sv.ByteTrack(frame_rate=int(fps))
241
+ else:
242
+ raise ValueError(f"Invalid tracker: {tracker}")
243
+
244
+
245
+ def update_tracker(tracker, detections, frame):
246
+ if isinstance(tracker, trackers.SORTTracker):
247
+ return tracker.update(detections)
248
+ elif isinstance(tracker, trackers.DeepSORTTracker):
249
+ return tracker.update(detections, frame)
250
+ elif isinstance(tracker, sv.ByteTrack):
251
+ return tracker.update_with_detections(detections)
252
+ else:
253
+ raise ValueError(f"Invalid tracker: {tracker}")
254
+
255
+
256
  def process_video(
257
  video_path: str,
258
  checkpoint: str,
259
+ tracker_algorithm: Optional[str] = None,
260
+ classes: str = "all",
261
  confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
262
  progress: gr.Progress = gr.Progress(track_tqdm=True),
263
  ) -> str:
 
278
  frames = read_video_k_frames(video_path, n_frames_to_read, read_each_i_frame)
279
  frames = [cv2.resize(frame, (target_width, target_height), interpolation=cv2.INTER_CUBIC) for frame in frames]
280
 
281
+ # Set the color lookup mode to assign colors by track ID
282
+ # This mean objects with the same track ID will be annotated by the same color
283
+ color_lookup = sv.ColorLookup.TRACK if tracker_algorithm else sv.ColorLookup.CLASS
284
+
285
+ box_annotator = sv.BoxAnnotator(color, color_lookup=color_lookup, thickness=1)
286
+ label_annotator = sv.LabelAnnotator(color, color_lookup=color_lookup, text_scale=0.5)
287
+ trace_annotator = sv.TraceAnnotator(color, color_lookup=color_lookup, thickness=1, trace_length=100)
288
+
289
+ # preprocess classes
290
+ if classes != "all":
291
+ classes_list = [cls.strip().lower() for cls in classes.split(",")]
292
+ else:
293
+ classes_list = None
294
 
295
  results, id2label = detect_objects(
296
  images=np.array(frames),
297
  checkpoint=checkpoint,
298
  confidence_threshold=confidence_threshold,
299
  target_size=(target_height, target_width),
300
+ classes=classes_list,
301
  )
302
 
303
+
304
  annotated_frames = []
305
+
306
+ # detections
307
+ if tracker_algorithm:
308
+ tracker = get_tracker(tracker_algorithm, target_fps)
309
+ for frame, result in progress.tqdm(zip(frames, results), desc="Tracking objects", total=len(frames)):
310
+ detections = sv.Detections.from_transformers(result, id2label=id2label)
311
+ detections = detections.with_nms(threshold=0.95, class_agnostic=True)
312
+ detections = update_tracker(tracker, detections, frame)
313
+ labels = [f"#{tracker_id} {id2label[class_id]}" for class_id, tracker_id in zip(detections.class_id, detections.tracker_id)]
314
+ annotated_frame = box_annotator.annotate(scene=frame, detections=detections)
315
+ annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
316
+ annotated_frame = trace_annotator.annotate(scene=annotated_frame, detections=detections)
317
+ annotated_frames.append(annotated_frame)
318
+
319
+ else:
320
+ for frame, result in tqdm.tqdm(zip(frames, results), desc="Annotating frames", total=len(frames)):
321
+ detections = sv.Detections.from_transformers(result, id2label=id2label)
322
+ detections = detections.with_nms(threshold=0.95, class_agnostic=True)
323
+ annotated_frame = box_annotator.annotate(scene=frame, detections=detections)
324
+ annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections)
325
+ annotated_frames.append(annotated_frame)
326
 
327
  output_filename = os.path.join(VIDEO_OUTPUT_DIR, f"output_{uuid.uuid4()}.mp4")
328
  iio.imwrite(output_filename, annotated_frames, fps=target_fps, codec="h264")
 
378
  value=DEFAULT_CHECKPOINT,
379
  elem_classes="input-component",
380
  ),
381
+ gr.Dropdown(
382
+ choices=TRACKERS,
383
+ label="Select Tracker (Optional)",
384
+ value=None,
385
+ elem_classes="input-component",
386
+ ),
387
+ gr.TextArea(
388
+ label="Specify Class Names to Detect (comma separated)",
389
+ value="all",
390
+ lines=1,
391
+ elem_classes="input-component",
392
+ ),
393
  gr.Slider(
394
  minimum=0.1,
395
  maximum=1.0,
 
474
  with gr.Row():
475
  with gr.Column(scale=1, min_width=300):
476
  with gr.Group():
477
+ video_input, video_checkpoint, video_tracker, video_classes, video_confidence_threshold = create_video_inputs()
478
  video_detect_button, video_clear_button = create_button_row()
479
  with gr.Column(scale=2):
480
  video_output = gr.Video(
 
485
 
486
  gr.Examples(
487
  examples=[
488
+ [example["path"], DEFAULT_CHECKPOINT, example["tracker"], example["classes"], DEFAULT_CONFIDENCE_THRESHOLD]
489
  for example in VIDEO_EXAMPLES
490
  ],
491
+ inputs=[video_input, video_checkpoint, video_tracker, video_classes, video_confidence_threshold],
492
  outputs=[video_output],
493
  fn=process_video,
494
  cache_examples=False,
 
527
  fn=lambda: (
528
  None,
529
  DEFAULT_CHECKPOINT,
530
+ None,
531
+ "all",
532
  DEFAULT_CONFIDENCE_THRESHOLD,
533
  None,
534
  ),
535
  outputs=[
536
  video_input,
537
  video_checkpoint,
538
+ video_tracker,
539
+ video_classes,
540
  video_confidence_threshold,
541
  video_output,
542
  ],
 
558
  # Video detect button
559
  video_detect_button.click(
560
  fn=process_video,
561
+ inputs=[video_input, video_checkpoint, video_tracker, video_classes, video_confidence_threshold],
562
  outputs=[video_output],
563
  )
564
 
requirements.txt CHANGED
@@ -8,4 +8,5 @@ tqdm
8
  pillow
9
  supervision
10
  spaces
11
- imageio[pyav]
 
 
8
  pillow
9
  supervision
10
  spaces
11
+ imageio[pyav]
12
+ trackers @ git+https://github.com/roboflow/trackers