usmanyousaf's picture
Update app.py
effc91a verified
raw
history blame
4.79 kB
import os
from fastapi import FastAPI, Request, Form, File, UploadFile
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.templating import Jinja2Templates
from groq import Groq
import io
# Set up the Groq client
os.environ["GROQ_API_KEY"] = "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"
client = Groq(api_key=os.environ["GROQ_API_KEY"])
# Initialize FastAPI app and template engine
app = FastAPI()
templates = Jinja2Templates(directory="templates")
@app.get("/", response_class=HTMLResponse)
async def index(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
import logging
# Set up basic logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
@app.post("/transcribe")
async def transcribe_audio(audio_data: UploadFile = File(...), language: str = Form(...)):
try:
logger.debug(f"Received audio file: {audio_data.filename} with language: {language}")
audio_content = await audio_data.read()
logger.debug(f"Audio content length: {len(audio_content)}")
# Transcribe the audio based on the selected language
transcription = client.audio.transcriptions.create(
file=(audio_data.filename, audio_content),
model="whisper-large-v3",
prompt="Transcribe the audio accurately based on the selected language.",
response_format="text",
language=language,
)
logger.debug(f"Transcription result: {transcription}")
return JSONResponse(content={'transcription': transcription})
except Exception as e:
logger.error(f"Error during transcription: {e}")
return JSONResponse(status_code=500, content={'error': str(e)})
@app.post("/check_grammar")
async def check_grammar(transcription: str = Form(...), language: str = Form(...)):
if not transcription or not language:
return JSONResponse(status_code=400, content={'error': 'Missing transcription or language selection'})
try:
# Grammar check
grammar_prompt = (
f"Briefly check the grammar of the following text in {language}: {transcription}. "
"Identify any word that does not belong to the selected language and flag it. Based on the number of incorrect words also check the grammer deeply and carefully "
"Provide a score from 1 to 10 based on the grammar accuracy, reducing points for incorrect words and make sure to output the score on a new line after two line break like ""SCORE=""."
)
grammar_check_response = client.chat.completions.create(
model="llama3-groq-70b-8192-tool-use-preview",
messages=[{"role": "user", "content": grammar_prompt}]
)
grammar_feedback = grammar_check_response.choices[0].message.content.strip()
# Vocabulary check
vocabulary_prompt = (
f"Check the vocabulary accuracy of the following text in {language}: {transcription}. "
"Identify any word that does not belong to the selected language and flag it. Based on the number of incorrect words also check the grammer deeply and carefully "
"provide a score from 1 to 10,based on the vocabulary accuracy reducing points for incorrect words and make sure to output the score on a new line after two line break like ""SCORE=""."
)
vocabulary_check_response = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[{"role": "user", "content": vocabulary_prompt}]
)
vocabulary_feedback = vocabulary_check_response.choices[0].message.content.strip()
# Calculate scores
grammar_score = calculate_score(grammar_feedback)
vocabulary_score = calculate_score(vocabulary_feedback)
return JSONResponse(content={
'grammar_feedback': grammar_feedback,
'vocabulary_feedback': vocabulary_feedback,
'grammar_score': grammar_score,
'vocabulary_score': vocabulary_score
})
except Exception as e:
return JSONResponse(status_code=500, content={'error': str(e)})
def calculate_score(feedback: str) -> int:
"""
Calculate score based on feedback content.
This function searches for the keyword 'SCORE=' or similar variations
(SCORE:, score:, etc.) and extracts the score value.
"""
# Look for 'SCORE=' or similar variations and extract the score using a regular expression
import re
match = re.search(r'(SCORE=|score=|SCORE:|score:|SCORE = )\s*(\d+)', feedback)
if match:
return int(match.group(2))
return 0
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)