|
import os |
|
from fastapi import FastAPI, Request, Form, File, UploadFile |
|
from fastapi.responses import HTMLResponse, JSONResponse |
|
from fastapi.templating import Jinja2Templates |
|
from groq import Groq |
|
import io |
|
|
|
|
|
os.environ["GROQ_API_KEY"] = "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" |
|
client = Groq(api_key=os.environ["GROQ_API_KEY"]) |
|
|
|
|
|
app = FastAPI() |
|
templates = Jinja2Templates(directory="templates") |
|
|
|
@app.get("/", response_class=HTMLResponse) |
|
async def index(request: Request): |
|
return templates.TemplateResponse("index.html", {"request": request}) |
|
|
|
import logging |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
logger = logging.getLogger(__name__) |
|
|
|
@app.post("/transcribe") |
|
async def transcribe_audio(audio_data: UploadFile = File(...), language: str = Form(...)): |
|
try: |
|
logger.debug(f"Received audio file: {audio_data.filename} with language: {language}") |
|
audio_content = await audio_data.read() |
|
logger.debug(f"Audio content length: {len(audio_content)}") |
|
|
|
|
|
transcription = client.audio.transcriptions.create( |
|
file=(audio_data.filename, audio_content), |
|
model="whisper-large-v3", |
|
prompt="Transcribe the audio accurately based on the selected language.", |
|
response_format="text", |
|
language=language, |
|
) |
|
|
|
logger.debug(f"Transcription result: {transcription}") |
|
return JSONResponse(content={'transcription': transcription}) |
|
|
|
except Exception as e: |
|
logger.error(f"Error during transcription: {e}") |
|
return JSONResponse(status_code=500, content={'error': str(e)}) |
|
|
|
@app.post("/check_grammar") |
|
async def check_grammar(transcription: str = Form(...), language: str = Form(...)): |
|
if not transcription or not language: |
|
return JSONResponse(status_code=400, content={'error': 'Missing transcription or language selection'}) |
|
|
|
try: |
|
|
|
grammar_prompt = ( |
|
f"Briefly check the grammar of the following text in {language}: {transcription}. " |
|
"Identify any word that does not belong to the selected language and flag it. Based on the number of incorrect words also check the grammer deeply and carefully " |
|
"Provide a score from 1 to 10 based on the grammar accuracy, reducing points for incorrect words and make sure to output the score on a new line after two line break like ""SCORE=""." |
|
) |
|
grammar_check_response = client.chat.completions.create( |
|
model="llama3-groq-70b-8192-tool-use-preview", |
|
messages=[{"role": "user", "content": grammar_prompt}] |
|
) |
|
grammar_feedback = grammar_check_response.choices[0].message.content.strip() |
|
|
|
|
|
vocabulary_prompt = ( |
|
f"Check the vocabulary accuracy of the following text in {language}: {transcription}. " |
|
"Identify any word that does not belong to the selected language and flag it. Based on the number of incorrect words also check the grammer deeply and carefully " |
|
"provide a score from 1 to 10,based on the vocabulary accuracy reducing points for incorrect words and make sure to output the score on a new line after two line break like ""SCORE=""." |
|
) |
|
|
|
vocabulary_check_response = client.chat.completions.create( |
|
model="llama-3.1-70b-versatile", |
|
messages=[{"role": "user", "content": vocabulary_prompt}] |
|
) |
|
vocabulary_feedback = vocabulary_check_response.choices[0].message.content.strip() |
|
|
|
|
|
grammar_score = calculate_score(grammar_feedback) |
|
vocabulary_score = calculate_score(vocabulary_feedback) |
|
|
|
return JSONResponse(content={ |
|
'grammar_feedback': grammar_feedback, |
|
'vocabulary_feedback': vocabulary_feedback, |
|
'grammar_score': grammar_score, |
|
'vocabulary_score': vocabulary_score |
|
}) |
|
|
|
except Exception as e: |
|
return JSONResponse(status_code=500, content={'error': str(e)}) |
|
|
|
|
|
def calculate_score(feedback: str) -> int: |
|
""" |
|
Calculate score based on feedback content. |
|
This function searches for the keyword 'SCORE=' or similar variations |
|
(SCORE:, score:, etc.) and extracts the score value. |
|
""" |
|
|
|
import re |
|
match = re.search(r'(SCORE=|score=|SCORE:|score:|SCORE = )\s*(\d+)', feedback) |
|
|
|
if match: |
|
return int(match.group(2)) |
|
return 0 |
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|