Spaces:
Sleeping
Sleeping
usmanyousaf
commited on
Commit
•
ffd40da
1
Parent(s):
09d7b43
create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import pdfplumber
|
4 |
+
from fuzzywuzzy import fuzz
|
5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
import spacy
|
7 |
+
|
8 |
+
# Load the SpaCy model
|
9 |
+
nlp = spacy.load("en_core_web_sm")
|
10 |
+
|
11 |
+
# Function to extract entities from text
|
12 |
+
def extract_entities(text):
|
13 |
+
doc = nlp(text)
|
14 |
+
entities = {ent.label_: ent.text for ent in doc.ents}
|
15 |
+
return entities
|
16 |
+
|
17 |
+
# Function to compute matching score
|
18 |
+
def compute_advanced_matching_score(cv_text, cv_entities, required_education, required_skills, required_experience):
|
19 |
+
score = 0
|
20 |
+
|
21 |
+
# Named Entity Recognition Matching for Education
|
22 |
+
education = cv_entities.get('EDU', '')
|
23 |
+
score += fuzz.token_set_ratio(education, required_education) / 100
|
24 |
+
|
25 |
+
# Fuzzy Matching for Skills
|
26 |
+
for skill in required_skills:
|
27 |
+
max_skill_match_score = max([fuzz.token_set_ratio(skill, skill_in_cv) for skill_in_cv in cv_text.split()] + [0])
|
28 |
+
score += max_skill_match_score / 100
|
29 |
+
|
30 |
+
# Vector Similarity Matching for Experience
|
31 |
+
experience_text = cv_entities.get('DATE', '')
|
32 |
+
doc1 = nlp(experience_text)
|
33 |
+
doc2 = nlp(f"{required_experience} years")
|
34 |
+
score += cosine_similarity(doc1.vector.reshape(1, -1), doc2.vector.reshape(1, -1))[0][0]
|
35 |
+
|
36 |
+
return score
|
37 |
+
|
38 |
+
# Function to process CVs and compute scores
|
39 |
+
def process_cvs(uploaded_files, required_education, required_skills, required_experience, top_cvs_count):
|
40 |
+
cv_scores = {}
|
41 |
+
for uploaded_file in uploaded_files:
|
42 |
+
file_extension = uploaded_file.name.split('.')[-1]
|
43 |
+
if file_extension in ["pdf"]:
|
44 |
+
with pdfplumber.open(uploaded_file) as pdf:
|
45 |
+
text = ''
|
46 |
+
for page in pdf.pages:
|
47 |
+
text += page.extract_text()
|
48 |
+
entities = extract_entities(text)
|
49 |
+
cv_scores[uploaded_file.name] = compute_advanced_matching_score(text, entities, required_education, required_skills, required_experience)
|
50 |
+
|
51 |
+
top_cvs = sorted(cv_scores.items(), key=lambda x: x[1], reverse=True)[:top_cvs_count]
|
52 |
+
return top_cvs
|
53 |
+
|
54 |
+
def main():
|
55 |
+
st.markdown('<style>h1{text-align:center;}</style>', unsafe_allow_html=True) # Center-align the title
|
56 |
+
st.title("Resume Filtering App")
|
57 |
+
|
58 |
+
|
59 |
+
uploaded_files = st.file_uploader("Upload Resume Files", type=["pdf"], accept_multiple_files=True)
|
60 |
+
required_education = st.text_input("Required Education")
|
61 |
+
required_skills = st.text_input("Required Skills (comma-separated)")
|
62 |
+
required_experience = st.text_input("Required Experience")
|
63 |
+
top_cvs_count = st.number_input("Number of Top Resume to Display", min_value=1, step=1, value=3)
|
64 |
+
|
65 |
+
if st.button("Match Resume"):
|
66 |
+
if uploaded_files and required_education and required_skills and required_experience:
|
67 |
+
required_skills = [skill.strip() for skill in required_skills.split(',')]
|
68 |
+
top_cvs = process_cvs(uploaded_files, required_education, required_skills, required_experience, top_cvs_count)
|
69 |
+
st.subheader("Top Matching Resume:")
|
70 |
+
for filename, score in top_cvs:
|
71 |
+
st.write(f"{filename}: {score:.2f}")
|
72 |
+
|
73 |
+
if __name__ == "__main__":
|
74 |
+
main()
|