Spaces:
Runtime error
Runtime error
from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet, LogisticRegression | |
from sklearn.preprocessing import PolynomialFeatures | |
from sklearn.tree import DecisionTreeRegressor | |
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor | |
from sklearn.svm import SVR | |
from xgboost import XGBRegressor | |
from lightgbm import LGBMRegressor | |
from sklearn.metrics import mean_squared_error, r2_score | |
from sklearn.model_selection import train_test_split | |
from sklearn.model_selection import train_test_split | |
from xgboost import XGBRegressor | |
from lightgbm import LGBMRegressor | |
class RegressionModels: | |
def __init__(self): | |
self.data = None | |
self.X_train = None | |
self.X_test = None | |
self.y_train = None | |
self.y_test = None | |
self.models = { | |
'Linear Regression': LinearRegression(), | |
'Polynomial Regression': LinearRegression(), | |
'Ridge Regression': Ridge(), | |
'Lasso Regression': Lasso(), | |
'ElasticNet Regression': ElasticNet(), | |
'Logistic Regression': LogisticRegression(), | |
'Decision Tree Regression': DecisionTreeRegressor(), | |
'Random Forest Regression': RandomForestRegressor(), | |
'Gradient Boosting Regression': GradientBoostingRegressor(), | |
'Support Vector Regression (SVR)': SVR(), | |
'XGBoost': XGBRegressor(), | |
'LightGBM': LGBMRegressor() | |
} | |
def add_data(self, X, y): | |
self.data = (X, y) | |
def split_data(self, test_size=0.2, random_state=None): | |
if self.data is None: | |
raise ValueError("No data provided. Use add_data method to add data first.") | |
X, y = self.data | |
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(X, y, test_size=test_size, random_state=random_state) | |
def fit(self, model_name): | |
if self.X_train is None or self.y_train is None: | |
raise ValueError("Data not split. Use split_data method to split data into training and testing sets.") | |
model = self.models[model_name] | |
model.fit(self.X_train, self.y_train) | |
def train(self, model_name): | |
if self.X_train is None or self.y_train is None or self.X_test is None: | |
raise ValueError("Data not split. Use split_data method to split data into training and testing sets.") | |
model = self.models[model_name] | |
model.fit(self.X_train, self.y_train) | |
y_pred = model.predict(self.X_test) | |
return y_pred | |
def evaluate(self, model_name): | |
if self.X_test is None or self.y_test is None: | |
raise ValueError("Data not split. Use split_data method to split data into training and testing sets.") | |
model = self.models[model_name] | |
y_pred = model.predict(self.X_test) | |
mse = mean_squared_error(self.y_test, y_pred) | |
r2 = r2_score(self.y_test, y_pred) | |
return mse, r2 | |
def predict(self, model_name, X): | |
model = self.models[model_name] | |
return model.predict(X) | |