penguine_species / test.py
uservipin's picture
optimise code and add multiple selection of model and provision for hyper parameter for selected model
8f5ebe6
raw
history blame
4.2 kB
import pandas as pd
import streamlit as st
from classification import ClassificationModels
def main():
st.sidebar.title("Navigation")
page_options = ["Classification", "Regressor", "NLP", "Image", "Voice", "Video", "LLMs"]
choice = st.sidebar.radio("Go to", page_options)
if choice == "Classification":
st.title("Classification")
spectra = st.file_uploader("Upload file", type={"csv", "txt"})
if spectra is not None:
spectra_df = pd.read_csv(spectra)
st.write(spectra_df.head(5))
st.write("Headers", spectra_df.columns.tolist())
st.write("Total Rows", spectra_df.shape[0])
option = st.text_input("Enter your text here:")
if option:
st.write("You entered:", option)
y = spectra_df[option]
X= spectra_df.drop(option, axis=1)
st.write("X",X.head(5) )
st.write("y", y.head(5))
clf = ClassificationModels(X,y)
# Split the data
clf.split_data()
# Train the models
naive_bayes_model = clf.naive_bayes_classifier()
logistic_regression_model = clf.logistic_regression()
decision_tree_model = clf.decision_tree()
random_forests_model = clf.random_forests()
svm_model = clf.support_vector_machines()
knn_model = clf.k_nearest_neighbour()
# Evaluate the models
naive_bayes_accuracy = clf.evaluate_model(naive_bayes_model)
logistic_regression_accuracy = clf.evaluate_model(logistic_regression_model)
decision_tree_accuracy = clf.evaluate_model(decision_tree_model)
random_forests_accuracy = clf.evaluate_model(random_forests_model)
svm_accuracy = clf.evaluate_model(svm_model)
knn_accuracy = clf.evaluate_model(knn_model)
# Evaluate classification model
naive_bayes_classification_report = clf.evaluate_classification_report(naive_bayes_model)
logistic_regression_classification_report = clf.evaluate_classification_report(logistic_regression_model)
decision_tree_classification_report = clf.evaluate_classification_report(decision_tree_model)
random_forest_classification_report = clf.evaluate_classification_report(random_forests_model)
svm_classification_report = clf.evaluate_classification_report(svm_model)
knn_classification_report = clf.evaluate_classification_report(knn_model)
# Display the model prediction
# st.write("Naive Bayes Model Prediction:", clf.predict_model(naive_bayes_model))
# Display the accuracies
st.write("Naive Bayes Accuracy:", naive_bayes_accuracy)
st.write("Logistic Regression Accuracy:", logistic_regression_accuracy)
st.write("Decision Tree Accuracy:", decision_tree_accuracy)
st.write("Random Forests Accuracy:", random_forests_accuracy)
st.write("Support Vector Machines Accuracy:", svm_accuracy)
st.write("K-Nearest Neighbors Accuracy:", knn_accuracy)
# Display classification reports
st.write("Naive Bayes Classification Report:", pd.DataFrame(naive_bayes_classification_report))
st.write("Logistic Regression Classification Report:", pd.DataFrame(logistic_regression_classification_report))
st.write("Decision Tree Classification Report:", pd.DataFrame(decision_tree_classification_report))
st.write("Random Forests Classification Report:", pd.DataFrame(random_forest_classification_report))
st.write("Support Vector Machines Classification Report:", pd.DataFrame(svm_classification_report))
st.write("K-Nearest Neighbors Classification Report:", pd.DataFrame(knn_classification_report))
# Display the confusion matrix
if __name__ == "__main__":
main()