BLIP2-DeiT-VQA / app.py
usernameisanna's picture
Update app.py
d8ca139 verified
raw
history blame
2.82 kB
import gradio as gr
import torch
import torch.nn.functional as F
from transformers import Blip2Processor, Blip2ForConditionalGeneration
from PIL import Image
from peft import LoraConfig, get_peft_model
# Initialize the processor and model
processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl")
# model_path = "full-blip2-deit-config-yes-no-2.pth"
# model = torch.load("./full-blip2-deit-config-2.pth")
# model = torch.load("./full-blip2-deit.pth") # not working - error
model = torch.load("./full-blip2-deit-config-free-form-4-ver-2.pth")
model.eval() # Set the model to evaluation mode
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def preprocess_image(image):
"""Preprocess the image to match the model's input requirements."""
# Convert PIL image to tensor
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(device)
# Apply specific model's preprocessing
patch_embeddings = model.vision_model.embeddings.patch_embeddings.projection(pixel_values)
patch_embeddings_flat = patch_embeddings.view(1, -1, 1408)
cls_token = model.vision_model.embeddings.cls_token.expand(1, -1, -1)
dist_token = model.vision_model.embeddings.distillation_token.expand(1, -1, -1)
full_embeddings = torch.cat([cls_token, dist_token, patch_embeddings_flat], dim=1)
encoder_outputs = model.vision_model.encoder(full_embeddings)
image_outputs = encoder_outputs.last_hidden_state
image_outputs = F.adaptive_avg_pool2d(image_outputs, (3, 50176))
image_outputs = image_outputs.view(1, 3, 224, 224) # Adjusted dimensions
return image_outputs
def generate_answer_blip2(image, question):
"""Generate answers based on an image and a question using a BLIP2 model."""
image_outputs = preprocess_image(image)
# Prepare question
question_formatted = "Question: " + question + " Answer:"
inputs = processor(text=question_formatted, return_tensors="pt")
inputs['pixel_values'] = image_outputs.to(device) # Ensure image tensor is on the correct device
# Generate response using the model
generated_ids = model.generate(**inputs, max_length=50)
generated_answer = processor.batch_decode(generated_ids, skip_special_tokens=True)
return generated_answer[0] # Return the first (and typically only) generated answer
# Setting up the Gradio interface
iface = gr.Interface(
fn=generate_answer_blip2,
inputs=[gr.Image(label="Upload Image"), gr.Textbox(label="Enter your question")],
outputs=gr.Textbox(label="Generated Answer"),
title="Visual Question Answering with DeiT-BLIP2 Model",
description="Upload an image and type a related question to receive an answer generated by the model."
)
if __name__ == "__main__":
iface.launch()