Script-Generator-HOC / src /streamlit_app.py
userIdc2024's picture
Update src/streamlit_app.py
1444cae verified
import streamlit as st
from google import genai
import tempfile
import os
import time
import json
from typing import Optional
import pandas as pd
import logging
from database import insert_analysis_result
from dotenv import load_dotenv
load_dotenv()
# Backend API Key Configuration
GEMINI_API_KEY = os.getenv("GEMINI_KEY")
# Page configuration
st.set_page_config(
page_title="Video Analyser and Script Generator",
page_icon="🎥",
layout="wide",
initial_sidebar_state="expanded"
)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
def configure_gemini():
"""Configure Gemini API with backend key"""
return genai.Client(api_key=GEMINI_API_KEY)
# Enhanced system prompt with timestamp-based improvements
SYSTEM_PROMPT = f"""{os.getenv("SYS_PROMPT")}"""
def analyze_video_and_generate_script(
video_bytes,
video_name,
offer_details: str = "",
target_audience: str = "",
specific_hooks: str = "",
additional_context: str = ""
):
"""
Analyze video and generate direct response script variations
"""
try:
# Save uploaded video to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(video_name)[1]) as tmp_file:
tmp_file.write(video_bytes)
tmp_file_path = tmp_file.name
# Configure Gemini
client = configure_gemini()
# Show upload progress
upload_progress = st.progress(0)
upload_status = st.empty()
upload_status.text("Uploading video to Google AI...")
upload_progress.progress(20)
# Upload video to Gemini
video_file_obj = client.files.upload(file=tmp_file_path)
upload_progress.progress(40)
upload_status.text("Processing video...")
while video_file_obj.state.name == "PROCESSING":
time.sleep(2)
video_file_obj = client.files.get(name=video_file_obj.name)
upload_progress.progress(60)
if video_file_obj.state.name == "FAILED":
upload_status.error("Google AI file processing failed. Please try another video.")
return None
upload_progress.progress(80)
upload_status.text("Generating script variations...")
# Build the enhanced user prompt
user_prompt = f"""Analyze this reference video and generate 3 high-converting direct response video script variations with detailed timestamp-based improvements.
IMPORTANT CONTEXT TO FOLLOW WHEN CREATING OUTPUT:
- Offer Details: {offer_details}
- Target Audience: {target_audience}
- Specific Hooks: {specific_hooks}
ADDITIONAL CONTEXT (MANDATORY TO FOLLOW):
{additional_context}
You must reflect this additional context in:
- The script tone, CTA, visuals
- Compliance or branding constraints
- Any assumptions about audience or product
Failure to include this will be considered incomplete.
Please provide a comprehensive analysis including:
1. DETAILED VIDEO ANALYSIS with timestamp-based metrics:
- Break down the video into 5-10 second segments
- Rate each segment's effectiveness (1-10 scale)
- Identify specific elements (hook, transition, proof, CTA, etc.)
2. TIMESTAMP-BASED IMPROVEMENTS:
- Specific recommendations for each time segment
- Priority level for each improvement
- Expected impact of implementing changes
3. SCRIPT VARIATIONS:
- Create 2-3 complete script variations
- Each with timestamp-by-timestamp breakdown
- Different psychological triggers and approaches
IMPORTANT: Return only valid JSON in the exact format specified in the system prompt. Analyze the video second-by-second for maximum detail."""
# Generate response
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=[video_file_obj, user_prompt + "\n\n" + SYSTEM_PROMPT]
)
upload_progress.progress(100)
upload_status.success("Analysis complete!")
# Clean up temporary file
os.unlink(tmp_file_path)
# Parse JSON response
try:
response_text = response.text.strip()
if response_text.startswith('```json'):
response_text = response_text[7:-3]
elif response_text.startswith('```'):
response_text = response_text[3:-3]
json_response = json.loads(response_text)
return json_response
except json.JSONDecodeError as e:
st.error(f"Error parsing AI response: {str(e)}")
return None
except Exception as e:
st.error(f"Error processing video: {str(e)}")
return None
def display_script_variations(json_data):
"""Display script variations in formatted tables"""
if not json_data or "script_variations" not in json_data:
st.error("No script variations found in the response")
return
for i, variation in enumerate(json_data["script_variations"], 1):
variation_name = variation.get("variation_name", f"Variation {i}")
st.markdown(f"### Variation {i}: {variation_name}")
#Convert script table to DataFrame for better display
script_data = variation.get("script_table")
if not script_data:
st.warning(f"No script data for {variation_name}")
continue
df = pd.DataFrame(script_data)
# Rename columns for better display
df = df.rename(columns={
'timestamp': 'Timestamp',
'script_voiceover': 'Script / Voiceover',
'visual_direction': 'Visual Direction',
'psychological_trigger': 'Psychological Trigger',
'cta_action': 'CTA / Action'
})
st.table(df)
st.markdown("---")
def display_video_analysis(json_data):
"""Display video analysis in tabular format"""
if not json_data or "video_analysis" not in json_data:
st.error("No video analysis found in the response")
return
analysis = json_data["video_analysis"]
#Display general analysis
video_metrics = []
if isinstance(analysis, dict):
col1, col2 = st.columns(2)
with col1:
st.subheader("Effectiveness Factors")
st.write(analysis.get('effectiveness_factors', 'N/A'))
st.subheader("Target Audience")
st.write(analysis.get('target_audience', 'N/A'))
with col2:
st.subheader("Psychological Triggers")
st.write(analysis.get('psychological_triggers', 'N/A'))
video_metrics = analysis.get("video_metrics", [])
else:
st.warning("Unexpected format in video_analysis. Skipping metadata.")
if isinstance(analysis, list):
video_metrics = analysis
if video_metrics:
metrics_df = pd.DataFrame(video_metrics)
# Rename columns for better display
column_mapping = {
'timestamp': 'Timestamp',
'element': 'Element',
'current_approach': 'Current Approach',
'effectiveness_score': 'Score',
'notes': 'Analysis Notes'
}
metrics_df = metrics_df.rename(columns=column_mapping)
st.dataframe(
metrics_df,
use_container_width=True,
hide_index=True,
column_config={
"Timestamp": st.column_config.TextColumn(width="small"),
"Element": st.column_config.TextColumn(width="medium"),
"Current Approach": st.column_config.TextColumn(width="large"),
"Score": st.column_config.TextColumn(width="small"),
"Analysis Notes": st.column_config.TextColumn(width="large")
}
)
else:
st.warning("No detailed video metrics available")
def display_timestamp_improvements(json_data):
"""Display timestamp-based improvements in tabular format"""
improvements = json_data.get("timestamp_improvements")
if improvements is None:
st.error("No timestamp improvements found in the response")
return
if not improvements:
st.warning("No timestamp improvements available")
return
st.subheader("Timestamp-by-Timestamp Improvement Recommendations")
improvements = json_data["timestamp_improvements"]
if improvements:
improvements_df = pd.DataFrame(improvements)
# Rename columns for better display
column_mapping = {
'timestamp': 'Timestamp',
'current_element': 'Current Element',
'improvement_type': 'Improvement Type',
'recommended_change': 'Recommended Change',
'expected_impact': 'Expected Impact',
'priority': 'Priority'
}
improvements_df = improvements_df.rename(columns=column_mapping)
# Color code priority
def color_priority(val):
if val == 'High':
return 'background-color: #ffcccb'
elif val == 'Medium':
return 'background-color: #ffffcc'
elif val == 'Low':
return 'background-color: #ccffcc'
return ''
styled_df = improvements_df.style.applymap(color_priority, subset=['Priority'])
st.dataframe(
styled_df,
use_container_width=True,
hide_index=True,
column_config={
"Timestamp": st.column_config.TextColumn(width="small"),
"Current Element": st.column_config.TextColumn(width="medium"),
"Improvement Type": st.column_config.TextColumn(width="medium"),
"Recommended Change": st.column_config.TextColumn(width="large"),
"Expected Impact": st.column_config.TextColumn(width="medium"),
"Priority": st.column_config.TextColumn(width="small")
}
)
else:
st.warning("No timestamp improvements available")
def create_csv_download(json_data):
"""Create CSV content with all scripts combined"""
all_scripts_data = []
# Combine all script variations into one dataset
for i, variation in enumerate(json_data.get("script_variations", []), 1):
variation_name = variation.get("variation_name", f"Variation {i}")
for row in variation.get("script_table", []):
script_row = {
'Variation': variation_name,
'Timestamp': row.get('timestamp', ''),
'Script_Voiceover': row.get('script_voiceover', ''),
'Visual_Direction': row.get('visual_direction', ''),
'Psychological_Trigger': row.get('psychological_trigger', ''),
'CTA_Action': row.get('cta_action', '')
}
all_scripts_data.append(script_row)
# Convert to DataFrame and then to CSV
if all_scripts_data:
df = pd.DataFrame(all_scripts_data)
return df.to_csv(index=False)
else:
return "No script data available"
def check_token(user_token):
ACCESS_TOKEN = os.getenv("ACCESS_TOKEN")
if not ACCESS_TOKEN:
logger.critical("ACCESS_TOKEN not set in environment.")
return False, "Server error: Access token not configured."
if user_token == ACCESS_TOKEN:
logger.info("Access token validated successfully.")
return True, ""
logger.warning("Invalid access token attempt.")
return False, "Invalid token."
def main():
"""Main application function"""
st.set_page_config(
page_title="Video Analyser and Script Generator",
page_icon="🎥",
layout="wide",
initial_sidebar_state="expanded"
)
st.title("Video Analyser and Script Generator")
st.divider()
if "authenticated" not in st.session_state:
st.session_state["authenticated"] = False
if not st.session_state["authenticated"]:
st.markdown("## Access Required")
token_input = st.text_input("Enter Access Token", type="password")
if st.button("Unlock App"):
ok, error_msg = check_token(token_input)
if ok:
st.session_state["authenticated"] = True
st.rerun()
else:
st.error(error_msg)
return
# Sidebar navigation
if st.session_state["authenticated"]:
selected_tab = st.sidebar.radio("Select Mode", ["Script Generator", "History"])
# ========== SCRIPT GENERATOR ==========
if selected_tab == "Script Generator":
with st.expander("How to Use This Tool", expanded=False):
st.markdown("""
### Upload Guidelines:
- **Best videos to analyze**: Already profitable Facebook/TikTok ads in your niche
- **Video length**: 30–90 seconds work best for analysis
- **Quality**: Clear audio and visuals help with better analysis
### Context Tips:
- **Offer details**: Be specific about your main promise and mechanism
- **Audience**: Include demographics, pain points, and desires
- **Hooks**: Mention any specific angles that have worked for you
### Script Optimization:
- Generated scripts focus on stopping scroll and driving clicks
- Each variation tests different psychological triggers
- Use the timestamp format for precise video production
- Test multiple variations to find your best performer
""")
st.subheader("Input Configuration")
uploaded_video = st.file_uploader(
"Upload Reference Video",
type=['mp4', 'mov', 'avi', 'mkv'],
help="Upload a profitable ad video to analyze and create variations from"
)
if uploaded_video is None:
st.info("Please upload a reference video to begin analysis.")
st.subheader("Additional Context (Optional)")
offer_details = st.text_area(
"Offer Details",
placeholder="e.g., Solar installation with $0 down payment...",
height=80,
help="Describe the product/service and main promise"
)
target_audience = st.text_area(
"Target Audience",
placeholder="e.g., 40+ homeowners with high electricity bills...",
height=80,
help="Describe the ideal customer demographics and pain points"
)
specific_hooks = st.text_area(
"Specific Hooks to Test",
placeholder="e.g., Government rebate angle, celebrity endorsement...",
height=80,
help="Any specific angles or hooks you want to incorporate"
)
additional_context = st.text_area(
"Additional Context",
placeholder="Any other relevant information...",
height=100,
help="Compliance requirements, brand guidelines, or other notes"
)
generate_button = st.button("Generate Script Variations", use_container_width=True)
if "analysis_results" in st.session_state and st.session_state["analysis_results"]:
if st.button("Clear Results", use_container_width=True):
del st.session_state["analysis_results"]
st.rerun()
# Generate & show results
if uploaded_video and generate_button:
with st.spinner("Analyzing video and generating scripts..."):
video_bytes = uploaded_video.read()
uploaded_video.seek(0)
json_response = analyze_video_and_generate_script(
video_bytes,
uploaded_video.name,
offer_details,
target_audience,
specific_hooks,
additional_context
)
if json_response:
insert_analysis_result(
video_name=uploaded_video.name,
offer_details=offer_details,
target_audience=target_audience,
specific_hook=specific_hooks,
additional_context=additional_context,
response=json_response
)
st.session_state["analysis_results"] = json_response
if "analysis_results" in st.session_state:
json_response = st.session_state["analysis_results"]
tab1, tab2, tab3 = st.tabs(["Script Variations", "Video Analysis", "Improvement Recommendations"])
with tab1:
display_script_variations(json_response)
csv_content = create_csv_download(json_response)
st.download_button("Download All Scripts (CSV)", data=csv_content,
file_name="video_script_variations.csv", mime="text/csv")
with tab2:
display_video_analysis(json_response)
with tab3:
display_timestamp_improvements(json_response)
# ========== HISTORY ==========
elif selected_tab == "History":
from database import get_all_results
history_items = get_all_results(limit=20)
if history_items:
video_titles = [
f"{item['video_name']} ({item['created_at'].strftime('%Y-%m-%d %H:%M')})"
for item in history_items
]
selected = st.sidebar.radio("History Items", video_titles, index=0)
selected_index = video_titles.index(selected)
selected_data = history_items[selected_index]
st.subheader(f"Analysis for: {selected_data['video_name']}")
json_response = selected_data.get("response")
if json_response:
tab1, tab2, tab3 = st.tabs(["Script Variations", "Video Analysis", "Improvement Recommendations"])
with tab1:
display_script_variations(json_response)
with tab2:
display_video_analysis(json_response)
with tab3:
display_timestamp_improvements(json_response)
else:
st.warning("No valid response data for this analysis.")
else:
st.sidebar.info("No saved analyses found.")
st.info("No saved history available.")
if __name__ == "__main__":
try:
logger.info("Launching Streamlit app...")
main()
except Exception as e:
logger.exception("Unhandled error during app launch.")