user-agent
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -46,26 +46,34 @@ ATTRIBUTES_DICT = attributes_data['attribute_mapping']
|
|
46 |
def shot(input, category, level):
|
47 |
output_dict = {}
|
48 |
if level == 'variant':
|
49 |
-
subColour,mainColour,score = get_colour(ast.literal_eval(str(input)),category)
|
50 |
openai_parsed_response = get_openAI_tags(ast.literal_eval(str(input)))
|
51 |
face_embeddings = get_face_embeddings(ast.literal_eval(str(input)))
|
52 |
-
cropped_images = get_cropped_images(ast.literal_eval(str(input)),category)
|
|
|
|
|
53 |
output_dict['colors'] = {
|
54 |
-
"main":mainColour,
|
55 |
-
"sub":subColour,
|
56 |
-
"score":score
|
57 |
}
|
58 |
output_dict['image_mapping'] = openai_parsed_response
|
59 |
output_dict['face_embeddings'] = face_embeddings
|
60 |
output_dict['cropped_images'] = cropped_images
|
61 |
|
62 |
-
|
63 |
if level == 'product':
|
64 |
-
common_result = get_predicted_attributes(ast.literal_eval(str(input)),category)
|
65 |
output_dict['attributes'] = common_result
|
66 |
output_dict['subcategory'] = category
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
|
@@ -411,35 +419,55 @@ def encode_images_to_base64(cropped_list):
|
|
411 |
return base64_images
|
412 |
|
413 |
|
414 |
-
def get_cropped_images(images,category):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
cropped_list = []
|
416 |
resultsPerCategory = {}
|
417 |
for num, image in enumerate(images):
|
418 |
image = open_image_from_url(image)
|
419 |
class_counts, output_img, cropped_images, cropped_classes = get_objects(image, 0.37)
|
420 |
-
|
421 |
if not class_counts:
|
422 |
continue
|
423 |
|
424 |
-
# Get the inverse category as any other mapping label except the current one corresponding category
|
425 |
-
inverse_category = [label for i, labels in enumerate(label_mapping) for label in labels if i != get_category_index(category) and i != 0]
|
426 |
-
|
427 |
-
# If category is a cardigan, we don't recommend category indices 1 and 3
|
428 |
-
if category == 'women-sweatersknits-cardigan':
|
429 |
-
inverse_category = [label for i, labels in enumerate(label_mapping) for label in labels if i != get_category_index(category) and i != 1 and i != 3]
|
430 |
-
|
431 |
for i, image in enumerate(cropped_images):
|
432 |
-
cropped_category = cropped_classes[i]
|
433 |
-
print(cropped_category, cropped_classes[i], get_category_index(category))
|
434 |
-
|
435 |
-
specific_category = label_mapping[cropped_category]
|
436 |
-
|
437 |
-
if cropped_category == get_category_index(category):
|
438 |
-
continue
|
439 |
-
|
440 |
cropped_list.append(image)
|
441 |
-
|
442 |
-
|
443 |
base64_images = encode_images_to_base64(cropped_list)
|
444 |
|
445 |
return base64_images
|
@@ -447,6 +475,7 @@ def get_cropped_images(images,category):
|
|
447 |
|
448 |
|
449 |
|
|
|
450 |
# Define the Gradio interface with the updated components
|
451 |
iface = gr.Interface(
|
452 |
fn=shot,
|
|
|
46 |
def shot(input, category, level):
|
47 |
output_dict = {}
|
48 |
if level == 'variant':
|
49 |
+
subColour, mainColour, score = get_colour(ast.literal_eval(str(input)), category)
|
50 |
openai_parsed_response = get_openAI_tags(ast.literal_eval(str(input)))
|
51 |
face_embeddings = get_face_embeddings(ast.literal_eval(str(input)))
|
52 |
+
cropped_images = get_cropped_images(ast.literal_eval(str(input)), category)
|
53 |
+
|
54 |
+
# Ensure all outputs are JSON serializable
|
55 |
output_dict['colors'] = {
|
56 |
+
"main": mainColour,
|
57 |
+
"sub": subColour,
|
58 |
+
"score": score
|
59 |
}
|
60 |
output_dict['image_mapping'] = openai_parsed_response
|
61 |
output_dict['face_embeddings'] = face_embeddings
|
62 |
output_dict['cropped_images'] = cropped_images
|
63 |
|
|
|
64 |
if level == 'product':
|
65 |
+
common_result = get_predicted_attributes(ast.literal_eval(str(input)), category)
|
66 |
output_dict['attributes'] = common_result
|
67 |
output_dict['subcategory'] = category
|
68 |
|
69 |
+
# Convert the dictionary to a JSON-serializable format
|
70 |
+
try:
|
71 |
+
serialized_output = json.dumps(output_dict)
|
72 |
+
except TypeError as e:
|
73 |
+
print(f"Serialization Error: {e}")
|
74 |
+
return {"error": "Serialization failed"}
|
75 |
+
|
76 |
+
return serialized_output
|
77 |
|
78 |
|
79 |
|
|
|
419 |
return base64_images
|
420 |
|
421 |
|
422 |
+
# def get_cropped_images(images,category):
|
423 |
+
# cropped_list = []
|
424 |
+
# resultsPerCategory = {}
|
425 |
+
# for num, image in enumerate(images):
|
426 |
+
# image = open_image_from_url(image)
|
427 |
+
# class_counts, output_img, cropped_images, cropped_classes = get_objects(image, 0.37)
|
428 |
+
# if not class_counts:
|
429 |
+
# continue
|
430 |
+
|
431 |
+
# # Get the inverse category as any other mapping label except the current one corresponding category
|
432 |
+
# inverse_category = [label for i, labels in enumerate(label_mapping) for label in labels if i != get_category_index(category) and i != 0]
|
433 |
+
|
434 |
+
# # If category is a cardigan, we don't recommend category indices 1 and 3
|
435 |
+
# if category == 'women-sweatersknits-cardigan':
|
436 |
+
# inverse_category = [label for i, labels in enumerate(label_mapping) for label in labels if i != get_category_index(category) and i != 1 and i != 3]
|
437 |
+
|
438 |
+
# for i, image in enumerate(cropped_images):
|
439 |
+
# cropped_category = cropped_classes[i]
|
440 |
+
# print(cropped_category, cropped_classes[i], get_category_index(category))
|
441 |
+
|
442 |
+
# specific_category = label_mapping[cropped_category]
|
443 |
+
|
444 |
+
# if cropped_category == get_category_index(category):
|
445 |
+
# continue
|
446 |
+
|
447 |
+
# cropped_list.append(image)
|
448 |
+
|
449 |
+
|
450 |
+
# base64_images = encode_images_to_base64(cropped_list)
|
451 |
+
|
452 |
+
# return base64_images
|
453 |
+
|
454 |
+
|
455 |
+
|
456 |
+
|
457 |
+
def get_cropped_images(images, category):
|
458 |
cropped_list = []
|
459 |
resultsPerCategory = {}
|
460 |
for num, image in enumerate(images):
|
461 |
image = open_image_from_url(image)
|
462 |
class_counts, output_img, cropped_images, cropped_classes = get_objects(image, 0.37)
|
463 |
+
|
464 |
if not class_counts:
|
465 |
continue
|
466 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
467 |
for i, image in enumerate(cropped_images):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
cropped_list.append(image)
|
469 |
+
|
470 |
+
# Convert cropped images to base64 strings
|
471 |
base64_images = encode_images_to_base64(cropped_list)
|
472 |
|
473 |
return base64_images
|
|
|
475 |
|
476 |
|
477 |
|
478 |
+
|
479 |
# Define the Gradio interface with the updated components
|
480 |
iface = gr.Interface(
|
481 |
fn=shot,
|