user-agent
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -101,26 +101,43 @@ def shot(input, category, level):
|
|
101 |
# subColour = responses[0][0]['label'].split(" clothing:")[0]
|
102 |
|
103 |
# return subColour, mainColour, responses[0][0]['score']
|
104 |
-
@spaces.GPU
|
105 |
-
def get_colour(image_urls, category):
|
106 |
-
colourLabels = list(COLOURS_DICT.keys())
|
107 |
-
for i in range(len(colourLabels)):
|
108 |
-
colourLabels[i] = colourLabels[i] + " clothing: " + category
|
109 |
|
|
|
|
|
|
|
|
|
110 |
print("Colour Labels:", colourLabels) # Debug: Print colour labels
|
111 |
print("Image URLs:", image_urls) # Debug: Print image URLs
|
112 |
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
if mainColour not in COLOURS_DICT:
|
117 |
return None, None, None
|
118 |
|
119 |
-
|
120 |
-
for
|
121 |
-
labels[i] = labels[i] + " clothing: " + category
|
122 |
-
|
123 |
print("Labels for pipe:", labels) # Debug: Confirm labels are correct
|
|
|
124 |
responses = pipe(image_urls, candidate_labels=labels)
|
125 |
subColour = responses[0][0]['label'].split(" clothing:")[0]
|
126 |
|
@@ -128,6 +145,7 @@ def get_colour(image_urls, category):
|
|
128 |
|
129 |
|
130 |
|
|
|
131 |
@spaces.GPU
|
132 |
def get_predicted_attributes(image_urls, category):
|
133 |
# Assuming ATTRIBUTES_DICT and pipe are defined outside this function
|
|
|
101 |
# subColour = responses[0][0]['label'].split(" clothing:")[0]
|
102 |
|
103 |
# return subColour, mainColour, responses[0][0]['score']
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
@spaces.GPU
|
106 |
+
def get_colour(image_urls, category):
|
107 |
+
# Prepare color labels
|
108 |
+
colourLabels = [f"{color} clothing: {category}" for color in COLOURS_DICT.keys()]
|
109 |
print("Colour Labels:", colourLabels) # Debug: Print colour labels
|
110 |
print("Image URLs:", image_urls) # Debug: Print image URLs
|
111 |
|
112 |
+
# Split labels into two batches
|
113 |
+
mid_index = len(colourLabels) // 2
|
114 |
+
first_batch = colourLabels[:mid_index]
|
115 |
+
second_batch = colourLabels[mid_index:]
|
116 |
+
|
117 |
+
# Process the first batch
|
118 |
+
responses_first_batch = pipe(image_urls, candidate_labels=first_batch)
|
119 |
+
# Get the top 3 from the first batch
|
120 |
+
top3_first_batch = sorted(responses_first_batch[0], key=lambda x: x['score'], reverse=True)[:3]
|
121 |
+
|
122 |
+
# Process the second batch
|
123 |
+
responses_second_batch = pipe(image_urls, candidate_labels=second_batch)
|
124 |
+
# Get the top 3 from the second batch
|
125 |
+
top3_second_batch = sorted(responses_second_batch[0], key=lambda x: x['score'], reverse=True)[:3]
|
126 |
+
|
127 |
+
# Combine the top 3 from each batch
|
128 |
+
combined_top6 = top3_first_batch + top3_second_batch
|
129 |
+
# Get the final top 3 from the combined list
|
130 |
+
final_top3 = sorted(combined_top6, key=lambda x: x['score'], reverse=True)[:3]
|
131 |
+
|
132 |
+
mainColour = final_top3[0]['label'].split(" clothing:")[0]
|
133 |
|
134 |
if mainColour not in COLOURS_DICT:
|
135 |
return None, None, None
|
136 |
|
137 |
+
# Get sub-colors for the main color
|
138 |
+
labels = [f"{label} clothing: {category}" for label in COLOURS_DICT[mainColour]]
|
|
|
|
|
139 |
print("Labels for pipe:", labels) # Debug: Confirm labels are correct
|
140 |
+
|
141 |
responses = pipe(image_urls, candidate_labels=labels)
|
142 |
subColour = responses[0][0]['label'].split(" clothing:")[0]
|
143 |
|
|
|
145 |
|
146 |
|
147 |
|
148 |
+
|
149 |
@spaces.GPU
|
150 |
def get_predicted_attributes(image_urls, category):
|
151 |
# Assuming ATTRIBUTES_DICT and pipe are defined outside this function
|