|
import gradio as gr |
|
from transformers import pipeline |
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
pipe = pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch32") |
|
images="dog.jpg" |
|
|
|
def shot(image, labels_text): |
|
PIL_image = Image.fromarray(np.uint8(image)).convert('RGB') |
|
labels = labels_text.split(",") |
|
res = pipe(images=PIL_image, |
|
candidate_labels=labels, |
|
hypothesis_template= "This is a photo of a {}") |
|
return {dic["label"]: dic["score"] for dic in res} |
|
|
|
iface = gr.Interface(shot, ["image", "text"], "label", examples=[["dog.jpg", "dog,cat,bird"], |
|
["germany.jpg", "germany,belgium,colombia"], |
|
["colombia.jpg", "germany,belgium,colombia"]]) |
|
|
|
iface.launch() |