Tom Aarsen
Add cloned GLiNER repository
914502f
raw
history blame
17.5 kB
import argparse
import json
from pathlib import Path
import re
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from modules.layers import LstmSeq2SeqEncoder
from modules.base import InstructBase
from modules.evaluator import Evaluator, greedy_search
from modules.span_rep import SpanRepLayer
from modules.token_rep import TokenRepLayer
from torch import nn
from torch.nn.utils.rnn import pad_sequence
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
from huggingface_hub.utils import HfHubHTTPError
class GLiNER(InstructBase, PyTorchModelHubMixin):
def __init__(self, config):
super().__init__(config)
self.config = config
# [ENT] token
self.entity_token = "<<ENT>>"
self.sep_token = "<<SEP>>"
# usually a pretrained bidirectional transformer, returns first subtoken representation
self.token_rep_layer = TokenRepLayer(model_name=config.model_name, fine_tune=config.fine_tune,
subtoken_pooling=config.subtoken_pooling, hidden_size=config.hidden_size,
add_tokens=[self.entity_token, self.sep_token])
# hierarchical representation of tokens
self.rnn = LstmSeq2SeqEncoder(
input_size=config.hidden_size,
hidden_size=config.hidden_size // 2,
num_layers=1,
bidirectional=True,
)
# span representation
self.span_rep_layer = SpanRepLayer(
span_mode=config.span_mode,
hidden_size=config.hidden_size,
max_width=config.max_width,
dropout=config.dropout,
)
# prompt representation (FFN)
self.prompt_rep_layer = nn.Sequential(
nn.Linear(config.hidden_size, config.hidden_size * 4),
nn.Dropout(config.dropout),
nn.ReLU(),
nn.Linear(config.hidden_size * 4, config.hidden_size)
)
def compute_score_train(self, x):
span_idx = x['span_idx'] * x['span_mask'].unsqueeze(-1)
new_length = x['seq_length'].clone()
new_tokens = []
all_len_prompt = []
num_classes_all = []
# add prompt to the tokens
for i in range(len(x['tokens'])):
all_types_i = list(x['classes_to_id'][i].keys())
# multiple entity types in all_types. Prompt is appended at the start of tokens
entity_prompt = []
num_classes_all.append(len(all_types_i))
# add enity types to prompt
for entity_type in all_types_i:
entity_prompt.append(self.entity_token) # [ENT] token
entity_prompt.append(entity_type) # entity type
entity_prompt.append(self.sep_token) # [SEP] token
# prompt format:
# [ENT] entity_type [ENT] entity_type ... [ENT] entity_type [SEP]
# add prompt to the tokens
tokens_p = entity_prompt + x['tokens'][i]
# input format:
# [ENT] entity_type_1 [ENT] entity_type_2 ... [ENT] entity_type_m [SEP] token_1 token_2 ... token_n
# update length of the sequence (add prompt length to the original length)
new_length[i] = new_length[i] + len(entity_prompt)
# update tokens
new_tokens.append(tokens_p)
# store prompt length
all_len_prompt.append(len(entity_prompt))
# create a mask using num_classes_all (0, if it exceeds the number of classes, 1 otherwise)
max_num_classes = max(num_classes_all)
entity_type_mask = torch.arange(max_num_classes).unsqueeze(0).expand(len(num_classes_all), -1).to(
x['span_mask'].device)
entity_type_mask = entity_type_mask < torch.tensor(num_classes_all).unsqueeze(-1).to(
x['span_mask'].device) # [batch_size, max_num_classes]
# compute all token representations
bert_output = self.token_rep_layer(new_tokens, new_length)
word_rep_w_prompt = bert_output["embeddings"] # embeddings for all tokens (with prompt)
mask_w_prompt = bert_output["mask"] # mask for all tokens (with prompt)
# get word representation (after [SEP]), mask (after [SEP]) and entity type representation (before [SEP])
word_rep = [] # word representation (after [SEP])
mask = [] # mask (after [SEP])
entity_type_rep = [] # entity type representation (before [SEP])
for i in range(len(x['tokens'])):
prompt_entity_length = all_len_prompt[i] # length of prompt for this example
# get word representation (after [SEP])
word_rep.append(word_rep_w_prompt[i, prompt_entity_length:prompt_entity_length + x['seq_length'][i]])
# get mask (after [SEP])
mask.append(mask_w_prompt[i, prompt_entity_length:prompt_entity_length + x['seq_length'][i]])
# get entity type representation (before [SEP])
entity_rep = word_rep_w_prompt[i, :prompt_entity_length - 1] # remove [SEP]
entity_rep = entity_rep[0::2] # it means that we take every second element starting from the second one
entity_type_rep.append(entity_rep)
# padding for word_rep, mask and entity_type_rep
word_rep = pad_sequence(word_rep, batch_first=True) # [batch_size, seq_len, hidden_size]
mask = pad_sequence(mask, batch_first=True) # [batch_size, seq_len]
entity_type_rep = pad_sequence(entity_type_rep, batch_first=True) # [batch_size, len_types, hidden_size]
# compute span representation
word_rep = self.rnn(word_rep, mask)
span_rep = self.span_rep_layer(word_rep, span_idx)
# compute final entity type representation (FFN)
entity_type_rep = self.prompt_rep_layer(entity_type_rep) # (batch_size, len_types, hidden_size)
num_classes = entity_type_rep.shape[1] # number of entity types
# similarity score
scores = torch.einsum('BLKD,BCD->BLKC', span_rep, entity_type_rep)
return scores, num_classes, entity_type_mask
def forward(self, x):
# compute span representation
scores, num_classes, entity_type_mask = self.compute_score_train(x)
batch_size = scores.shape[0]
# loss for filtering classifier
logits_label = scores.view(-1, num_classes)
labels = x["span_label"].view(-1) # (batch_size * num_spans)
mask_label = labels != -1 # (batch_size * num_spans)
labels.masked_fill_(~mask_label, 0) # Set the labels of padding tokens to 0
# one-hot encoding
labels_one_hot = torch.zeros(labels.size(0), num_classes + 1, dtype=torch.float32).to(scores.device)
labels_one_hot.scatter_(1, labels.unsqueeze(1), 1) # Set the corresponding index to 1
labels_one_hot = labels_one_hot[:, 1:] # Remove the first column
# Shape of labels_one_hot: (batch_size * num_spans, num_classes)
# compute loss (without reduction)
all_losses = F.binary_cross_entropy_with_logits(logits_label, labels_one_hot,
reduction='none')
# mask loss using entity_type_mask (B, C)
masked_loss = all_losses.view(batch_size, -1, num_classes) * entity_type_mask.unsqueeze(1)
all_losses = masked_loss.view(-1, num_classes)
# expand mask_label to all_losses
mask_label = mask_label.unsqueeze(-1).expand_as(all_losses)
# put lower loss for in label_one_hot (2 for positive, 1 for negative)
weight_c = labels_one_hot + 1
# apply mask
all_losses = all_losses * mask_label.float() * weight_c
return all_losses.sum()
def compute_score_eval(self, x, device):
# check if classes_to_id is dict
assert isinstance(x['classes_to_id'], dict), "classes_to_id must be a dict"
span_idx = (x['span_idx'] * x['span_mask'].unsqueeze(-1)).to(device)
all_types = list(x['classes_to_id'].keys())
# multiple entity types in all_types. Prompt is appended at the start of tokens
entity_prompt = []
# add enity types to prompt
for entity_type in all_types:
entity_prompt.append(self.entity_token)
entity_prompt.append(entity_type)
entity_prompt.append(self.sep_token)
prompt_entity_length = len(entity_prompt)
# add prompt
tokens_p = [entity_prompt + tokens for tokens in x['tokens']]
seq_length_p = x['seq_length'] + prompt_entity_length
out = self.token_rep_layer(tokens_p, seq_length_p)
word_rep_w_prompt = out["embeddings"]
mask_w_prompt = out["mask"]
# remove prompt
word_rep = word_rep_w_prompt[:, prompt_entity_length:, :]
mask = mask_w_prompt[:, prompt_entity_length:]
# get_entity_type_rep
entity_type_rep = word_rep_w_prompt[:, :prompt_entity_length - 1, :]
# extract [ENT] tokens (which are at even positions in entity_type_rep)
entity_type_rep = entity_type_rep[:, 0::2, :]
entity_type_rep = self.prompt_rep_layer(entity_type_rep) # (batch_size, len_types, hidden_size)
word_rep = self.rnn(word_rep, mask)
span_rep = self.span_rep_layer(word_rep, span_idx)
local_scores = torch.einsum('BLKD,BCD->BLKC', span_rep, entity_type_rep)
return local_scores
@torch.no_grad()
def predict(self, x, flat_ner=False, threshold=0.5):
self.eval()
local_scores = self.compute_score_eval(x, device=next(self.parameters()).device)
spans = []
for i, _ in enumerate(x["tokens"]):
local_i = local_scores[i]
wh_i = [i.tolist() for i in torch.where(torch.sigmoid(local_i) > threshold)]
span_i = []
for s, k, c in zip(*wh_i):
if s + k < len(x["tokens"][i]):
span_i.append((s, s + k, x["id_to_classes"][c + 1], local_i[s, k, c]))
span_i = greedy_search(span_i, flat_ner)
spans.append(span_i)
return spans
def predict_entities(self, text, labels, flat_ner=True, threshold=0.5):
tokens = []
start_token_idx_to_text_idx = []
end_token_idx_to_text_idx = []
for match in re.finditer(r'\w+(?:[-_]\w+)*|\S', text):
tokens.append(match.group())
start_token_idx_to_text_idx.append(match.start())
end_token_idx_to_text_idx.append(match.end())
input_x = {"tokenized_text": tokens, "ner": None}
x = self.collate_fn([input_x], labels)
output = self.predict(x, flat_ner=flat_ner, threshold=threshold)
entities = []
for start_token_idx, end_token_idx, ent_type in output[0]:
start_text_idx = start_token_idx_to_text_idx[start_token_idx]
end_text_idx = end_token_idx_to_text_idx[end_token_idx]
entities.append({
"start": start_token_idx_to_text_idx[start_token_idx],
"end": end_token_idx_to_text_idx[end_token_idx],
"text": text[start_text_idx:end_text_idx],
"label": ent_type,
})
return entities
def evaluate(self, test_data, flat_ner=False, threshold=0.5, batch_size=12, entity_types=None):
self.eval()
data_loader = self.create_dataloader(test_data, batch_size=batch_size, entity_types=entity_types, shuffle=False)
device = next(self.parameters()).device
all_preds = []
all_trues = []
for x in data_loader:
for k, v in x.items():
if isinstance(v, torch.Tensor):
x[k] = v.to(device)
batch_predictions = self.predict(x, flat_ner, threshold)
all_preds.extend(batch_predictions)
all_trues.extend(x["entities"])
evaluator = Evaluator(all_trues, all_preds)
out, f1 = evaluator.evaluate()
return out, f1
@classmethod
def _from_pretrained(
cls,
*,
model_id: str,
revision: Optional[str],
cache_dir: Optional[Union[str, Path]],
force_download: bool,
proxies: Optional[Dict],
resume_download: bool,
local_files_only: bool,
token: Union[str, bool, None],
map_location: str = "cpu",
strict: bool = False,
**model_kwargs,
):
# 1. Backwards compatibility: Use "gliner_base.pt" and "gliner_multi.pt" with all data
filenames = ["gliner_base.pt", "gliner_multi.pt"]
for filename in filenames:
model_file = Path(model_id) / filename
if not model_file.exists():
try:
model_file = hf_hub_download(
repo_id=model_id,
filename=filename,
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
except HfHubHTTPError:
continue
dict_load = torch.load(model_file, map_location=torch.device(map_location))
config = dict_load["config"]
state_dict = dict_load["model_weights"]
config.model_name = "microsoft/deberta-v3-base" if filename == "gliner_base.pt" else "microsoft/mdeberta-v3-base"
model = cls(config)
model.load_state_dict(state_dict, strict=strict, assign=True)
# Required to update flair's internals as well:
model.to(map_location)
return model
# 2. Newer format: Use "pytorch_model.bin" and "gliner_config.json"
from train import load_config_as_namespace
model_file = Path(model_id) / "pytorch_model.bin"
if not model_file.exists():
model_file = hf_hub_download(
repo_id=model_id,
filename="pytorch_model.bin",
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
config_file = Path(model_id) / "gliner_config.json"
if not config_file.exists():
config_file = hf_hub_download(
repo_id=model_id,
filename="gliner_config.json",
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
config = load_config_as_namespace(config_file)
model = cls(config)
state_dict = torch.load(model_file, map_location=torch.device(map_location))
model.load_state_dict(state_dict, strict=strict, assign=True)
model.to(map_location)
return model
def save_pretrained(
self,
save_directory: Union[str, Path],
*,
config: Optional[Union[dict, "DataclassInstance"]] = None,
repo_id: Optional[str] = None,
push_to_hub: bool = False,
**push_to_hub_kwargs,
) -> Optional[str]:
"""
Save weights in local directory.
Args:
save_directory (`str` or `Path`):
Path to directory in which the model weights and configuration will be saved.
config (`dict` or `DataclassInstance`, *optional*):
Model configuration specified as a key/value dictionary or a dataclass instance.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Huggingface Hub after saving it.
repo_id (`str`, *optional*):
ID of your repository on the Hub. Used only if `push_to_hub=True`. Will default to the folder name if
not provided.
kwargs:
Additional key word arguments passed along to the [`~ModelHubMixin.push_to_hub`] method.
"""
save_directory = Path(save_directory)
save_directory.mkdir(parents=True, exist_ok=True)
# save model weights/files
torch.save(self.state_dict(), save_directory / "pytorch_model.bin")
# save config (if provided)
if config is None:
config = self.config
if config is not None:
if isinstance(config, argparse.Namespace):
config = vars(config)
(save_directory / "gliner_config.json").write_text(json.dumps(config, indent=2))
# push to the Hub if required
if push_to_hub:
kwargs = push_to_hub_kwargs.copy() # soft-copy to avoid mutating input
if config is not None: # kwarg for `push_to_hub`
kwargs["config"] = config
if repo_id is None:
repo_id = save_directory.name # Defaults to `save_directory` name
return self.push_to_hub(repo_id=repo_id, **kwargs)
return None
def to(self, device):
super().to(device)
import flair
flair.device = device
return self