Spaces:
Paused
Paused
| import cv2 | |
| import numpy as np | |
| import shutil | |
| import os | |
| from os.path import join as pjoin | |
| def segment_img(org, segment_size, output_path, overlap=100): | |
| if not os.path.exists(output_path): | |
| os.mkdir(output_path) | |
| height, width = np.shape(org)[0], np.shape(org)[1] | |
| top = 0 | |
| bottom = segment_size | |
| segment_no = 0 | |
| while top < height and bottom < height: | |
| segment = org[top:bottom] | |
| cv2.imwrite(os.path.join(output_path, str(segment_no) + '.png'), segment) | |
| segment_no += 1 | |
| top += segment_size - overlap | |
| bottom = bottom + segment_size - overlap if bottom + segment_size - overlap <= height else height | |
| def clipping(img, components, pad=0, show=False): | |
| """ | |
| :param adjust: shrink(negative) or expand(positive) the bounding box | |
| :param img: original image | |
| :param corners: ((column_min, row_min),(column_max, row_max)) | |
| :return: list of clipping images | |
| """ | |
| clips = [] | |
| for component in components: | |
| clip = component.compo_clipping(img, pad=pad) | |
| clips.append(clip) | |
| if show: | |
| cv2.imshow('clipping', clip) | |
| cv2.waitKey() | |
| return clips | |
| def dissemble_clip_img_hollow(clip_root, org, compos): | |
| if os.path.exists(clip_root): | |
| shutil.rmtree(clip_root) | |
| os.mkdir(clip_root) | |
| cls_dirs = [] | |
| bkg = org.copy() | |
| hollow_out = np.ones(bkg.shape[:2], dtype=np.uint8) * 255 | |
| for compo in compos: | |
| cls = compo.category | |
| c_root = pjoin(clip_root, cls) | |
| c_path = pjoin(c_root, str(compo.id) + '.jpg') | |
| if cls not in cls_dirs: | |
| os.mkdir(c_root) | |
| cls_dirs.append(cls) | |
| clip = compo.compo_clipping(org) | |
| cv2.imwrite(c_path, clip) | |
| col_min, row_min, col_max, row_max = compo.put_bbox() | |
| hollow_out[row_min: row_max, col_min: col_max] = 0 | |
| bkg = cv2.merge((bkg, hollow_out)) | |
| cv2.imwrite(os.path.join(clip_root, 'bkg.png'), bkg) | |
| def dissemble_clip_img_fill(clip_root, org, compos, flag='most'): | |
| def average_pix_around(pad=6, offset=3): | |
| up = row_min - pad if row_min - pad >= 0 else 0 | |
| left = col_min - pad if col_min - pad >= 0 else 0 | |
| bottom = row_max + pad if row_max + pad < org.shape[0] - 1 else org.shape[0] - 1 | |
| right = col_max + pad if col_max + pad < org.shape[1] - 1 else org.shape[1] - 1 | |
| average = [] | |
| for i in range(3): | |
| avg_up = np.average(org[up:row_min - offset, left:right, i]) | |
| avg_bot = np.average(org[row_max + offset:bottom, left:right, i]) | |
| avg_left = np.average(org[up:bottom, left:col_min - offset, i]) | |
| avg_right = np.average(org[up:bottom, col_max + offset:right, i]) | |
| average.append(int((avg_up + avg_bot + avg_left + avg_right)/4)) | |
| return average | |
| def most_pix_around(pad=6, offset=2): | |
| up = row_min - pad if row_min - pad >= 0 else 0 | |
| left = col_min - pad if col_min - pad >= 0 else 0 | |
| bottom = row_max + pad if row_max + pad < org.shape[0] - 1 else org.shape[0] - 1 | |
| right = col_max + pad if col_max + pad < org.shape[1] - 1 else org.shape[1] - 1 | |
| most = [] | |
| for i in range(3): | |
| val = np.concatenate((org[up:row_min - offset, left:right, i].flatten(), | |
| org[row_max + offset:bottom, left:right, i].flatten(), | |
| org[up:bottom, left:col_min - offset, i].flatten(), | |
| org[up:bottom, col_max + offset:right, i].flatten())) | |
| # print(val) | |
| # print(np.argmax(np.bincount(val))) | |
| most.append(int(np.argmax(np.bincount(val)))) | |
| return most | |
| if os.path.exists(clip_root): | |
| shutil.rmtree(clip_root) | |
| os.mkdir(clip_root) | |
| cls_dirs = [] | |
| bkg = org.copy() | |
| for compo in compos: | |
| cls = compo.category | |
| c_root = pjoin(clip_root, cls) | |
| c_path = pjoin(c_root, str(compo.id) + '.jpg') | |
| if cls not in cls_dirs: | |
| os.mkdir(c_root) | |
| cls_dirs.append(cls) | |
| clip = compo.compo_clipping(org) | |
| cv2.imwrite(c_path, clip) | |
| col_min, row_min, col_max, row_max = compo.put_bbox() | |
| if flag == 'average': | |
| color = average_pix_around() | |
| elif flag == 'most': | |
| color = most_pix_around() | |
| cv2.rectangle(bkg, (col_min, row_min), (col_max, row_max), color, -1) | |
| cv2.imwrite(os.path.join(clip_root, 'bkg.png'), bkg) | |