Spaces:
Paused
Paused
| import os | |
| import cv2 | |
| import json | |
| import argparse | |
| from utils import Doubao, encode_image, image_mask | |
| DEFAULT_IMAGE_PATH = "data/input/test1.png" | |
| DEFAULT_API_PATH = "doubao_api.txt" | |
| PROMPT_LIST = [ | |
| ("header", "Please output the minimum bounding box of the header. Please output the bounding box in the format of <bbox>x1 y1 x2 y2</bbox>. Avoid the blank space in the header."), | |
| ("sidebar", "Please output the minimum bounding box of the sidebar. Please output the bounding box in the format of <bbox>x1 y1 x2 y2</bbox>. Avoid meaningless blank space in the sidebar."), | |
| ("navigation", "Please output the minimum bounding box of the navigation. Please output the bounding box in the format of <bbox>x1 y1 x2 y2</bbox>. Avoid the blank space in the navigation."), | |
| ("main content", "Please output the minimum bounding box of the main content. Please output the bounding box in the format of <bbox>x1 y1 x2 y2</bbox>. Avoid the blank space in the main content."), | |
| ] | |
| PROMPT_MERGE = "Return the bounding boxes of the sidebar, main content, header, and navigation in this webpage screenshot. Please only return the corresponding bounding boxes. Note: 1. The areas should not overlap; 2. All text information and other content should be framed inside; 3. Try to keep it compact without leaving a lot of blank space; 4. Output a label and the corresponding bounding box for each line." | |
| BBOX_TAG_START = "<bbox>" | |
| BBOX_TAG_END = "</bbox>" | |
| def get_args(): | |
| parser = argparse.ArgumentParser(description="Parses bounding boxes from an image using a vision model.") | |
| parser.add_argument('--run_id', type=str, required=True, help='A unique identifier for the processing run.') | |
| return parser.parse_args() | |
| def parse_bboxes(bbox_input: str) -> dict[str, tuple[int, int, int, int]]: | |
| """Parse bounding box string to a dictionary of normalized (0-1000) coordinate tuples.""" | |
| bboxes = {} | |
| try: | |
| components = bbox_input.strip().split('\n') | |
| for component in components: | |
| component = component.strip() | |
| if not component: | |
| continue | |
| if ':' in component: | |
| name, bbox_str = component.split(':', 1) | |
| else: | |
| bbox_str = component | |
| if 'sidebar' in component.lower(): name = 'sidebar' | |
| elif 'header' in component.lower(): name = 'header' | |
| elif 'navigation' in component.lower(): name = 'navigation' | |
| elif 'main content' in component.lower(): name = 'main content' | |
| else: name = 'unknown' | |
| name = name.strip().lower() | |
| bbox_str = bbox_str.strip() | |
| if BBOX_TAG_START in bbox_str and BBOX_TAG_END in bbox_str: | |
| start_idx = bbox_str.find(BBOX_TAG_START) + len(BBOX_TAG_START) | |
| end_idx = bbox_str.find(BBOX_TAG_END) | |
| coords_str = bbox_str[start_idx:end_idx].strip() | |
| try: | |
| norm_coords = list(map(int, coords_str.split())) | |
| if len(norm_coords) == 4: | |
| bboxes[name] = tuple(norm_coords) # Directly store normalized coordinates | |
| print(f"Successfully parsed {name}: {bboxes[name]}") | |
| except ValueError as e: | |
| print(f"Failed to parse coordinates for {name}: {e}") | |
| except Exception as e: | |
| print(f"Coordinate parsing failed: {str(e)}") | |
| print("Final parsed bboxes:", bboxes) | |
| return bboxes | |
| def draw_bboxes(image_path: str, bboxes: dict[str, tuple[int, int, int, int]], output_path: str) -> str: | |
| """Draws normalized (0-1000) bboxes on an image for visualization.""" | |
| image = cv2.imread(image_path) | |
| if image is None: return "" | |
| h, w = image.shape[:2] | |
| colors = {'sidebar': (0, 0, 255), 'header': (0, 255, 0), 'navigation': (255, 0, 0), 'main content': (255, 255, 0), 'unknown': (0, 0, 0)} | |
| output_image = image.copy() | |
| for component, norm_bbox in bboxes.items(): | |
| x_min = int(norm_bbox[0] * w / 1000) | |
| y_min = int(norm_bbox[1] * h / 1000) | |
| x_max = int(norm_bbox[2] * w / 1000) | |
| y_max = int(norm_bbox[3] * h / 1000) | |
| color = colors.get(component.lower(), (0, 0, 255)) | |
| cv2.rectangle(output_image, (x_min, y_min), (x_max, y_max), color, 3) | |
| cv2.putText(output_image, component, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2) | |
| if cv2.imwrite(output_path, output_image): | |
| print(f"Successfully saved annotated image: {output_path}") | |
| return output_path | |
| return "" | |
| def save_bboxes_to_json(bboxes: dict[str, tuple[int, int, int, int]], json_path: str) -> str: | |
| """Saves the normalized bboxes to a JSON file.""" | |
| # This is the unified format: a dictionary of lists. | |
| bboxes_dict = {k: list(v) for k, v in bboxes.items()} | |
| try: | |
| with open(json_path, 'w', encoding='utf-8') as f: | |
| json.dump(bboxes_dict, f, indent=4, ensure_ascii=False) | |
| print(f"Successfully saved bbox information to: {json_path}") | |
| return json_path | |
| except Exception as e: | |
| print(f"Error saving JSON file: {str(e)}") | |
| return "" | |
| def resolve_containment(bboxes: dict[str, tuple[int, int, int, int]]) -> dict[str, tuple[int, int, int, int]]: | |
| """ | |
| Resolves containment issues among bounding boxes. | |
| If a box is found to be fully contained within another, it is removed. | |
| This is based on the assumption that major layout components should not contain each other. | |
| """ | |
| def contains(box_a, box_b): | |
| """Checks if box_a completely contains box_b.""" | |
| xa1, ya1, xa2, ya2 = box_a | |
| xb1, yb1, xb2, yb2 = box_b | |
| return xa1 <= xb1 and ya1 <= yb1 and xa2 >= xb2 and ya2 >= yb2 | |
| names = list(bboxes.keys()) | |
| removed = set() | |
| for i in range(len(names)): | |
| for j in range(len(names)): | |
| if i == j or names[i] in removed or names[j] in removed: | |
| continue | |
| name1, box1 = names[i], bboxes[names[i]] | |
| name2, box2 = names[j], bboxes[names[j]] | |
| if contains(box1, box2) or contains(box2, box1): | |
| print(f"Containment found: '{name1}' contains '{name2}'. Removing '{name2}'.") | |
| removed.add(name2) | |
| return {name: bbox for name, bbox in bboxes.items() if name not in removed} | |
| # sequential version of bbox parsing: Using recursive detection with mask | |
| def sequential_component_detection(image_path: str, api_path: str, temp_dir: str) -> dict[str, tuple[int, int, int, int]]: | |
| """ | |
| Sequential processing flow: detect each component in turn, mask the image after each detection | |
| """ | |
| bboxes = {} | |
| current_image_path = image_path | |
| ark_client = Doubao(api_path) | |
| image = cv2.imread(image_path) | |
| if image is None: | |
| print(f"Error: Failed to read image {image_path}") | |
| return bboxes | |
| h, w = image.shape[:2] | |
| for i, (component_name, prompt) in enumerate(PROMPT_LIST): | |
| print(f"\n=== Processing {component_name} (Step {i+1}/{len(PROMPT_LIST)}) ===") | |
| base64_image = encode_image(current_image_path) | |
| if not base64_image: | |
| print(f"Error: Failed to encode image for {component_name}") | |
| continue | |
| print(f"Sending prompt for {component_name}...") | |
| bbox_content = ark_client.ask(prompt, base64_image) | |
| print(f"Model response for {component_name}:") | |
| print(bbox_content) | |
| norm_bbox = parse_single_bbox(bbox_content, component_name) | |
| if norm_bbox: | |
| bboxes[component_name] = norm_bbox | |
| print(f"Successfully detected {component_name}: {norm_bbox}") | |
| masked_image = image_mask(current_image_path, norm_bbox) | |
| temp_image_path = os.path.join(temp_dir, f"temp_{component_name}_masked.png") | |
| masked_image.save(temp_image_path) | |
| current_image_path = temp_image_path | |
| print(f"Created masked image for next step: {temp_image_path}") | |
| else: | |
| print(f"Failed to detect {component_name}") | |
| return bboxes | |
| def parse_single_bbox(bbox_input: str, component_name: str) -> tuple[int, int, int, int]: | |
| """ | |
| Parses a single component's bbox string and returns normalized coordinates. | |
| """ | |
| print(f"Parsing bbox for {component_name}: {bbox_input}") | |
| try: | |
| if BBOX_TAG_START in bbox_input and BBOX_TAG_END in bbox_input: | |
| start_idx = bbox_input.find(BBOX_TAG_START) + len(BBOX_TAG_START) | |
| end_idx = bbox_input.find(BBOX_TAG_END) | |
| coords_str = bbox_input[start_idx:end_idx].strip() | |
| norm_coords = list(map(int, coords_str.split())) | |
| if len(norm_coords) == 4: | |
| return tuple(norm_coords) | |
| else: | |
| print(f"Invalid number of coordinates for {component_name}: {norm_coords}") | |
| else: | |
| print(f"No bbox tags found in response for {component_name}") | |
| except Exception as e: | |
| print(f"Failed to parse bbox for {component_name}: {e}") | |
| return None | |
| def main_content_processing(bboxes: dict[str, tuple[int, int, int, int]], image_path: str) -> dict[str, tuple[int, int, int, int]]: | |
| """devide the main content into several parts""" | |
| image = cv2.imread(image_path) | |
| if image is None: | |
| print(f"Error: Failed to read image {image_path}") | |
| return | |
| h, w = image.shape[:2] | |
| for component, bbox in bboxes.items(): | |
| bboxes[component] = ( | |
| int(bbox[0] * w / 1000), | |
| int(bbox[1] * h / 1000), | |
| int(bbox[2] * w / 1000), | |
| int(bbox[3] * h / 1000)) | |
| def main(): | |
| args = get_args() | |
| run_id = args.run_id | |
| # --- Dynamic Path Construction --- | |
| base_dir = os.path.dirname(os.path.abspath(__file__)) | |
| tmp_dir = os.path.join(base_dir, 'data', 'tmp', run_id) | |
| image_path = os.path.join(tmp_dir, f"{run_id}.png") | |
| api_path = os.path.join(base_dir, "doubao_api.txt") | |
| json_output_path = os.path.join(tmp_dir, f"{run_id}_bboxes.json") | |
| annotated_image_output_path = os.path.join(tmp_dir, f"{run_id}_with_bboxes.png") | |
| if not os.path.exists(image_path) or not os.path.exists(api_path): | |
| print(f"Error: Input image or API key file not found.") | |
| exit(1) | |
| print(f"--- Starting BBox Parsing for run_id: {run_id} ---") | |
| client = Doubao(api_path) | |
| bbox_content = client.ask(PROMPT_MERGE, encode_image(image_path)) | |
| bboxes = parse_bboxes(bbox_content) | |
| if bboxes: | |
| print("\n--- Resolving containment issues ---") | |
| bboxes = resolve_containment(bboxes) | |
| print("--- Containment resolved ---") | |
| print(f"\n--- Detection Complete for run_id: {run_id} ---") | |
| save_bboxes_to_json(bboxes, json_output_path) | |
| draw_bboxes(image_path, bboxes, annotated_image_output_path) | |
| else: | |
| print(f"\nNo valid bounding box coordinates found for run_id: {run_id}") | |
| # Still create an empty json file so the pipeline doesn't break | |
| save_bboxes_to_json({}, json_output_path) | |
| if __name__ == "__main__": | |
| main() |