laiviet's picture
Fix intro and sort order
5faacb0
raw
history blame
4.89 kB
import os
import json
import glob
from collections import defaultdict
import pandas as pd
import gradio as gr
from content import *
from css import *
import glob
ARC = "arc"
HELLASWAG = "hellaswag"
MMLU = "mmlu"
TRUTHFULQA = "truthfulqa"
BENCHMARKS = [ARC, HELLASWAG, MMLU, TRUTHFULQA]
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
LANGS = 'ar,bn,ca,da,de,es,eu,fr,gu,hi,hr,hu,hy,id,it,kn,ml,mr,ne,nl,pt,ro,ru,sk,sr,sv,ta,te,uk,vi,zh'.split(',')
LANG_NAME = {
'ar': 'Arabic',
'bn': 'Bengali',
'ca': 'Catalan',
'da': 'Danish',
'de': 'German',
'es': 'Spanish',
'eu': 'Basque',
'fr': 'French',
'gu': 'Gujarati',
'hi': 'Hindi',
'hr': 'Croatian',
'hu': 'Hungarian',
'hy': 'Armenian',
'id': 'Indonesian',
'it': 'Italian',
'kn': 'Kannada',
'ml': 'Malayalam',
'mr': 'Marathi',
'ne': 'Nepali',
'nl': 'Dutch',
'pt': 'Portuguese',
'ro': 'Romanian',
'ru': 'Russian',
'sk': 'Slovak',
'sr': 'Serbian',
'sv': 'Swedish',
'ta': 'Tamil',
'te': 'Telugu',
'uk': 'Ukrainian',
'vi': 'Vietnamese',
'zh': 'Chinese'
}
def collect_results():
performance_dict = defaultdict(dict)
pretrained_models = set()
for file in glob.glob('evals/*/*.json'):
with open(file, 'r') as f:
data = json.load(f)
if 'results' not in data:
continue
if 'config' not in data:
continue
results = data['results']
config = data['config']
if 'model_args' not in config:
continue
model_args = config['model_args'].split(',')
pretrained = [x for x in model_args if x.startswith('pretrained=')]
if len(pretrained) != 1:
continue
pretrained = pretrained[0].split('=')[1]
pretrained = pretrained.split('/')[-1]
pretrained_models.add(pretrained)
for lang_task, perfs in results.items():
task, lang = lang_task.split('_')
assert task in BENCHMARKS
if lang and task:
metric = METRICS[BENCHMARKS.index(task)]
p = round(perfs[metric] * 100, 1)
performance_dict[(pretrained, lang)][task] = p
return performance_dict, pretrained_models
def get_leaderboard_df(performance_dict, pretrained_models):
df = list()
for (pretrained, lang), perfs in performance_dict.items():
lang_name = LANG_NAME[lang]
arc_perf = perfs.get(ARC, 0.0)
hellaswag_perf = perfs.get(HELLASWAG, 0.0)
mmlu_perf = perfs.get(MMLU, 0.0)
truthfulqa_perf = perfs.get(TRUTHFULQA, 0.0)
if arc_perf * hellaswag_perf * mmlu_perf * truthfulqa_perf == 0:
continue
avg = round((arc_perf + hellaswag_perf + mmlu_perf + truthfulqa_perf) / 4, 1)
notes = ' '.join([pretrained, lang_name])
row = [pretrained, lang_name, lang, avg, arc_perf, hellaswag_perf, mmlu_perf, truthfulqa_perf, notes]
df.append(row)
df = pd.DataFrame.from_records(df, columns=COLS)
df = df.sort_values(by=[LANG_COL, AVERAGE_COL], ascending=False)
df = df[COLS]
return df
def search_table(df, query):
filtered_df = df[df[NOTES_COL].str.contains(query, case=False)]
return filtered_df
MODEL_COL = "Model"
LANG_COL = "Language"
CODE_COL = "Code"
AVERAGE_COL = "Average"
ARC_COL = "ARC (25-shot)"
HELLASWAG_COL = "HellaSwag (10-shot)️"
MMLU_COL = "MMLU (5-shot)"
TRUTHFULQA_COL = "TruthfulQA (0-shot)"
NOTES_COL = "Notes" # For search only
COLS = [MODEL_COL, LANG_COL, CODE_COL, AVERAGE_COL, ARC_COL, HELLASWAG_COL, MMLU_COL, TRUTHFULQA_COL, NOTES_COL]
TYPES = ["str", "str", "str", "number", "number", "number", "number", "number", "str"]
args = collect_results()
original_df = get_leaderboard_df(*args)
demo = gr.Blocks(css=CUSTOM_CSS)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRO_TEXT, elem_classes="markdown-text")
gr.Markdown(HOW_TO, elem_classes="markdown-text")
with gr.Box():
search_bar = gr.Textbox(
placeholder="Search models and languages...", show_label=False, elem_id="search-bar"
)
leaderboard_table = gr.components.Dataframe(
value=original_df,
headers=COLS,
datatype=TYPES,
max_rows=5,
elem_id="leaderboard-table",
)
# # Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df, headers=COLS, datatype=TYPES, max_rows=5, visible=False
)
search_bar.change(
search_table,
[hidden_leaderboard_table_for_search, search_bar],
leaderboard_table,
)
gr.Markdown(CREDIT, elem_classes="markdown-text")
gr.Markdown(CITATION, elem_classes="markdown-text")
demo.launch()