root
init
1f8bf61
raw
history blame
4.11 kB
import sys
from threading import Thread
import gradio as gr
import torch
from transformers import AutoModel, AutoProcessor
from transformers import StoppingCriteria, TextIteratorStreamer, StoppingCriteriaList
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = AutoModel.from_pretrained("unum-cloud/uform-gen2-qwen-halfB", trust_remote_code=True).to(device)
processor = AutoProcessor.from_pretrained("unum-cloud/uform-gen2-qwen-halfB", trust_remote_code=True)
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = [151645]
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
@torch.no_grad()
def response(message, history, image):
stop = StopOnTokens()
messages = [{"role": "system", "content": "You are a helpful assistant."}]
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
if len(messages) == 1:
message = f" <image>{message}"
messages.append({"role": "user", "content": message})
model_inputs = processor.tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
)
image = (
processor.feature_extractor(image)
.unsqueeze(0)
)
attention_mask = torch.ones(
1, model_inputs.shape[1] + processor.num_image_latents - 1
)
model_inputs = {
"input_ids": model_inputs,
"images": image,
"attention_mask": attention_mask
}
model_inputs = {k: v.to(device) for k, v in model_inputs.items()}
streamer = TextIteratorStreamer(processor.tokenizer, timeout=30., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=1024,
stopping_criteria=StoppingCriteriaList([stop])
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
history.append([message, ""])
partial_response = ""
for new_token in streamer:
partial_response += new_token
history[-1][1] = partial_response
yield history, gr.Button(visible=False), gr.Button(visible=True, interactive=True)
with gr.Blocks() as demo:
with gr.Row():
image = gr.Image(type="pil")
with gr.Column():
chat = gr.Chatbot(show_label=False)
message = gr.Textbox(interactive=True, show_label=False, container=False)
with gr.Row():
gr.ClearButton([chat, message])
stop = gr.Button(value="Stop", variant="stop", visible=False)
submit = gr.Button(value="Submit", variant="primary")
with gr.Row():
gr.Examples(
[
["images/interior.jpg", "Describe the image accurately."],
["images/cat.jpg", "Describe the image in three sentences."],
["images/child.jpg", "Describe the image in one sentence."],
],
[image, message],
label="Captioning"
)
gr.Examples(
[
["images/scream.jpg", "What is the main emotion of this image?"],
["images/louvre.jpg", "Where is this landmark located?"],
["images/three_people.jpg", "What are these people doing?"]
],
[image, message],
label="VQA"
)
response_handler = (
response,
[message, chat, image],
[chat, submit, stop]
)
postresponse_handler = (
lambda: (gr.Button(visible=False), gr.Button(visible=True)),
None,
[stop, submit]
)
event1 = message.submit(*response_handler)
event1.then(*postresponse_handler)
event2 = submit.click(*response_handler)
event2.then(*postresponse_handler)
stop.click(None, None, None, cancels=[event1, event2])
demo.queue()
demo.launch()