DeepDream / app.py
unnati026's picture
Create app.py
0ef3993
raw
history blame
4.39 kB
import streamlit as st
import numpy as np
import tensorflow as tf
from tensorflow.keras.applications import inception_v3
from tensorflow.keras.models import Model
from PIL import Image
import IPython.display as display
# Functions from your provided code
def load_image(image_path, max_dim):
img = Image.open(image_path)
img = img.convert("RGB")
img.thumbnail([max_dim, max_dim])
img = np.array(img, dtype=np.uint8)
img = np.expand_dims(img, axis=0)
return img
def deprocess_inception_image(img):
img = 255 * (img + 1) / 2
return np.array(img, np.uint8)
def array_to_img(array, deprocessing=False):
if deprocessing:
array = deprocess_inception_image(array)
if np.ndim(array) > 3:
assert array.shape[0] == 1
array = array[0]
return Image.fromarray(array)
def show_image(img):
image = array_to_img(img)
display.display(image)
def deep_dream_model(model, layer_names):
model.trainable = False
outputs = [model.get_layer(name).output for name in layer_names]
new_model = Model(inputs=model.input, outputs=outputs)
return new_model
def get_loss(activations):
loss = []
for activation in activations:
loss.append(tf.math.reduce_mean(activation))
return tf.reduce_sum(loss)
def model_output(model, inputs):
return model(inputs)
def get_loss_and_gradient(model, inputs, total_variation_weight=0):
with tf.GradientTape() as tape:
tape.watch(inputs)
activations = model_output(model, inputs)
loss = get_loss(activations)
loss = loss + total_variation_weight * tf.image.total_variation(inputs)
grads = tape.gradient(loss, inputs)
grads /= tf.math.reduce_std(grads) + 1e-8
return loss, grads
def run_gradient_ascent(model, inputs, epochs=1, steps_per_epoch=1, weight=0.05, total_variation_weight=0):
img = tf.convert_to_tensor(inputs)
for i in range(epochs):
for _ in range(steps_per_epoch):
_, grads = get_loss_and_gradient(model, img, total_variation_weight)
img = img + grads * weight
img = tf.clip_by_value(img, -1.0, 1.0)
return img.numpy()
centered_text = """
<div style="text-align: center;">
Built with ❤️ by Unnati
</div>
"""
# Streamlit App
st.title("Deep Dream Streamlit App")
st.write("Upload an image to generate mesmerising Deep Dream images. Adjust the parameters in the sidebar to get "
"different effects.")
st.write("Image generation may take a while depending on the parameters chosen, kindly be patient.")
# File uploader
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
# Checkboxes for selecting layers
st.sidebar.title("Adjust parameters for different effects!")
layer_checkboxes = []
for i in range(1, 11):
default_value = (i == 5) # Set default to True for layer 5, False for others
layer_checkbox = st.sidebar.checkbox(f"Layer {i}", value=default_value)
layer_checkboxes.append(layer_checkbox)
# Sliders for parameter adjustments
epochs = st.sidebar.slider("Epochs", 1, 5, 2, help="Number of training epochs")
steps_per_epoch = st.sidebar.slider("Steps per Epoch", 1, 100, 50, help="Number of steps per epoch")
weight = st.sidebar.slider("Weight", 0.01, 0.1, 0.02, step=0.01, help="Weight for gradient ascent")
if uploaded_file is not None:
# Load and preprocess the uploaded image
input_image = load_image(uploaded_file, max_dim=150)
preprocessed_image = inception_v3.preprocess_input(input_image)
# Create Inception model and modify for deep dream
inception = inception_v3.InceptionV3(weights="imagenet", include_top=False)
# Select layers based on user input
selected_layers = [f'mixed{i}' for i, checkbox in enumerate(layer_checkboxes, start=1) if checkbox]
dream_model = deep_dream_model(inception, selected_layers)
# Run gradient ascent
image_array = run_gradient_ascent(dream_model, preprocessed_image, epochs=epochs, steps_per_epoch=steps_per_epoch, weight=weight)
# Convert numpy arrays to PIL images
dream_pil_image = array_to_img(deprocess_inception_image(image_array))
# Display the Deep Dream image
st.image(dream_pil_image, caption='Deep Dream Image', width=300)
st.markdown("<hr>", unsafe_allow_html=True)
st.markdown(centered_text, unsafe_allow_html=True)