Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import ( | |
BartForConditionalGeneration, | |
BartTokenizer | |
) | |
model_name = 'unlisboa/bart_qa_assistant' | |
tokenizer = BartTokenizer.from_pretrained(model_name) | |
device = get_device() | |
model = BartForConditionalGeneration.from_pretrained(model_name).to(device) | |
model.eval() | |
def example(question, censor): | |
print(question, censor) | |
return question + str(censor) | |
examples = [["What's the meaning of life?", True]] | |
checkbox = gr.Checkbox(value=True, label="should censor output") | |
question_input = gr.Textbox(lines=2, label='Question:') | |
model_input = tokenizer(question_input, truncation=True, padding=True, return_tensors="pt") | |
generated_answers_encoded = model.generate(input_ids=model_input["input_ids"].to(device), | |
attention_mask=model_input["attention_mask"].to(device), | |
#bad_words_ids=bad_words_ids, | |
force_words_ids=None, | |
min_length=1, | |
max_length=100, | |
do_sample=True, | |
early_stopping=True, | |
num_beams=4, | |
temperature=1.0, | |
top_k=None, | |
top_p=None, | |
# eos_token_id=tokenizer.eos_token_id, | |
no_repeat_ngram_size=2, | |
num_return_sequences=1, | |
return_dict_in_generate=True, | |
output_scores=True) | |
response = tokenizer.batch_decode(generated_answers_encoded['sequences'], skip_special_tokens=True, | |
clean_up_tokenization_spaces=True)[0] | |
answer_output = gr.Textbox(lines=2, label='Answer:') | |
gr.Interface(fn=example, inputs=[question_input, checkbox], outputs=[answer_output], allow_flagging="never", examples=examples).launch() |