test27 / app.py
universalml's picture
Upload app.py with huggingface_hub
eac908e verified
raw
history blame contribute delete
968 Bytes
from transformers import pipeline
import gradio as gr
modelName = "test27"
hfUser = "universalml"
def prediction_function(inputFile):
# get user name of their hugging face
modelPath = hfUser + "/" + modelName
# takes some time
classifier = pipeline("audio-classification", model=modelPath)
try:
result = classifier(inputFile)
predictions = dict()
labels = []
for eachLabel in result:
predictions[eachLabel["label"]] = eachLabel["score"]
labels.append(eachLabel["label"])
result = predictions
except:
result = "no data provided!!"
return result
# change modelName parameter
def create_demo():
demo = gr.Interface(
fn=prediction_function,
# inputs=gr.Audio(sources="upload", type="filepath"),
inputs=gr.Audio(sources="microphone", type="filepath"),
outputs=gr.Label(num_top_classes=3),
)
demo.launch()
create_demo()