Update app_local.py (#17)
Browse files- Update app_local.py (e6226de0b4e526b510862269bb30165febee315f)
Co-authored-by: Yushen CHEN <SWivid@users.noreply.huggingface.co>
- app_local.py +39 -22
app_local.py
CHANGED
@@ -10,7 +10,7 @@ import tempfile
|
|
10 |
from einops import rearrange
|
11 |
from ema_pytorch import EMA
|
12 |
from vocos import Vocos
|
13 |
-
from pydub import AudioSegment
|
14 |
from model import CFM, UNetT, DiT, MMDiT
|
15 |
from cached_path import cached_path
|
16 |
from model.utils import (
|
@@ -20,6 +20,7 @@ from model.utils import (
|
|
20 |
)
|
21 |
from transformers import pipeline
|
22 |
import librosa
|
|
|
23 |
from txtsplit import txtsplit
|
24 |
|
25 |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
@@ -31,6 +32,8 @@ pipe = pipeline(
|
|
31 |
device=device,
|
32 |
)
|
33 |
|
|
|
|
|
34 |
# --------------------- Settings -------------------- #
|
35 |
|
36 |
target_sample_rate = 24000
|
@@ -45,8 +48,8 @@ speed = 1.0
|
|
45 |
# fix_duration = 27 # None or float (duration in seconds)
|
46 |
fix_duration = None
|
47 |
|
48 |
-
def load_model(exp_name, model_cls, model_cfg, ckpt_step):
|
49 |
-
checkpoint = torch.load(str(cached_path(f"hf://SWivid/
|
50 |
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
|
51 |
model = CFM(
|
52 |
transformer=model_cls(
|
@@ -69,20 +72,26 @@ def load_model(exp_name, model_cls, model_cfg, ckpt_step):
|
|
69 |
ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
|
70 |
ema_model.copy_params_from_ema_to_model()
|
71 |
|
72 |
-
return
|
73 |
|
74 |
# load models
|
75 |
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
76 |
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
77 |
|
78 |
-
F5TTS_ema_model
|
79 |
-
E2TTS_ema_model
|
80 |
|
81 |
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress = gr.Progress()):
|
82 |
print(gen_text)
|
83 |
gr.Info("Converting audio...")
|
84 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
85 |
aseg = AudioSegment.from_file(ref_audio_orig)
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
# Convert to mono
|
87 |
aseg = aseg.set_channels(1)
|
88 |
audio_duration = len(aseg)
|
@@ -93,10 +102,8 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress
|
|
93 |
ref_audio = f.name
|
94 |
if exp_name == "F5-TTS":
|
95 |
ema_model = F5TTS_ema_model
|
96 |
-
base_model = F5TTS_base_model
|
97 |
elif exp_name == "E2-TTS":
|
98 |
ema_model = E2TTS_ema_model
|
99 |
-
base_model = E2TTS_base_model
|
100 |
|
101 |
if not ref_text.strip():
|
102 |
gr.Info("No reference text provided, transcribing reference audio...")
|
@@ -111,6 +118,7 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress
|
|
111 |
else:
|
112 |
gr.Info("Using custom reference text...")
|
113 |
audio, sr = torchaudio.load(ref_audio)
|
|
|
114 |
# Audio
|
115 |
if audio.shape[0] > 1:
|
116 |
audio = torch.mean(audio, dim=0, keepdim=True)
|
@@ -122,7 +130,7 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress
|
|
122 |
audio = resampler(audio)
|
123 |
audio = audio.to(device)
|
124 |
# Chunk
|
125 |
-
chunks = txtsplit(gen_text,
|
126 |
results = []
|
127 |
generated_mel_specs = []
|
128 |
for chunk in progress.tqdm(chunks):
|
@@ -136,14 +144,14 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress
|
|
136 |
# duration = int(fix_duration * target_sample_rate / hop_length)
|
137 |
# else:
|
138 |
zh_pause_punc = r"。,、;:?!"
|
139 |
-
ref_text_len = len(ref_text) + len(re.findall(zh_pause_punc, ref_text))
|
140 |
-
|
141 |
-
duration = ref_audio_len + int(ref_audio_len / ref_text_len *
|
142 |
|
143 |
# inference
|
144 |
gr.Info(f"Generating audio using {exp_name}")
|
145 |
with torch.inference_mode():
|
146 |
-
generated, _ =
|
147 |
cond=audio,
|
148 |
text=final_text_list,
|
149 |
duration=duration,
|
@@ -155,7 +163,6 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress
|
|
155 |
generated = generated[:, ref_audio_len:, :]
|
156 |
generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
|
157 |
gr.Info("Running vocoder")
|
158 |
-
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
159 |
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
160 |
if rms < target_rms:
|
161 |
generated_wave = generated_wave * rms / target_rms
|
@@ -166,13 +173,23 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress
|
|
166 |
generated_wave = np.concatenate(results)
|
167 |
if remove_silence:
|
168 |
gr.Info("Removing audio silences... This may take a moment")
|
169 |
-
non_silent_intervals = librosa.effects.split(generated_wave, top_db=30)
|
170 |
-
non_silent_wave = np.array([])
|
171 |
-
for interval in non_silent_intervals:
|
172 |
-
|
173 |
-
|
174 |
-
generated_wave = non_silent_wave
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
# spectogram
|
178 |
# with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
|
@@ -214,6 +231,6 @@ Long-form/batched inference + speech editing is coming soon!
|
|
214 |
|
215 |
generate_btn.click(infer, inputs=[ref_audio_input, ref_text_input, gen_text_input, model_choice, remove_silence], outputs=[audio_output])
|
216 |
gr.Markdown("Unofficial demo by [mrfakename](https://x.com/realmrfakename)")
|
217 |
-
|
218 |
|
219 |
app.queue().launch()
|
|
|
10 |
from einops import rearrange
|
11 |
from ema_pytorch import EMA
|
12 |
from vocos import Vocos
|
13 |
+
from pydub import AudioSegment, silence
|
14 |
from model import CFM, UNetT, DiT, MMDiT
|
15 |
from cached_path import cached_path
|
16 |
from model.utils import (
|
|
|
20 |
)
|
21 |
from transformers import pipeline
|
22 |
import librosa
|
23 |
+
import soundfile as sf
|
24 |
from txtsplit import txtsplit
|
25 |
|
26 |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
|
|
32 |
device=device,
|
33 |
)
|
34 |
|
35 |
+
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
36 |
+
|
37 |
# --------------------- Settings -------------------- #
|
38 |
|
39 |
target_sample_rate = 24000
|
|
|
48 |
# fix_duration = 27 # None or float (duration in seconds)
|
49 |
fix_duration = None
|
50 |
|
51 |
+
def load_model(repo_name, exp_name, model_cls, model_cfg, ckpt_step):
|
52 |
+
checkpoint = torch.load(str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt")), map_location=device)
|
53 |
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
|
54 |
model = CFM(
|
55 |
transformer=model_cls(
|
|
|
72 |
ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
|
73 |
ema_model.copy_params_from_ema_to_model()
|
74 |
|
75 |
+
return model
|
76 |
|
77 |
# load models
|
78 |
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
79 |
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
80 |
|
81 |
+
F5TTS_ema_model = load_model("F5-TTS", "F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
|
82 |
+
E2TTS_ema_model = load_model("E2-TTS", "E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000)
|
83 |
|
84 |
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress = gr.Progress()):
|
85 |
print(gen_text)
|
86 |
gr.Info("Converting audio...")
|
87 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
88 |
aseg = AudioSegment.from_file(ref_audio_orig)
|
89 |
+
# remove long silence in reference audio
|
90 |
+
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
|
91 |
+
non_silent_wave = AudioSegment.silent(duration=0)
|
92 |
+
for non_silent_seg in non_silent_segs:
|
93 |
+
non_silent_wave += non_silent_seg
|
94 |
+
aseg = non_silent_wave
|
95 |
# Convert to mono
|
96 |
aseg = aseg.set_channels(1)
|
97 |
audio_duration = len(aseg)
|
|
|
102 |
ref_audio = f.name
|
103 |
if exp_name == "F5-TTS":
|
104 |
ema_model = F5TTS_ema_model
|
|
|
105 |
elif exp_name == "E2-TTS":
|
106 |
ema_model = E2TTS_ema_model
|
|
|
107 |
|
108 |
if not ref_text.strip():
|
109 |
gr.Info("No reference text provided, transcribing reference audio...")
|
|
|
118 |
else:
|
119 |
gr.Info("Using custom reference text...")
|
120 |
audio, sr = torchaudio.load(ref_audio)
|
121 |
+
max_chars = int(len(ref_text) / (audio.shape[-1] / sr) * (30 - audio.shape[-1] / sr))
|
122 |
# Audio
|
123 |
if audio.shape[0] > 1:
|
124 |
audio = torch.mean(audio, dim=0, keepdim=True)
|
|
|
130 |
audio = resampler(audio)
|
131 |
audio = audio.to(device)
|
132 |
# Chunk
|
133 |
+
chunks = txtsplit(gen_text, 0.7*max_chars, 0.9*max_chars) # 100 chars preferred, 150 max
|
134 |
results = []
|
135 |
generated_mel_specs = []
|
136 |
for chunk in progress.tqdm(chunks):
|
|
|
144 |
# duration = int(fix_duration * target_sample_rate / hop_length)
|
145 |
# else:
|
146 |
zh_pause_punc = r"。,、;:?!"
|
147 |
+
ref_text_len = len(ref_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, ref_text))
|
148 |
+
chunk = len(chunk.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gen_text))
|
149 |
+
duration = ref_audio_len + int(ref_audio_len / ref_text_len * chunk / speed)
|
150 |
|
151 |
# inference
|
152 |
gr.Info(f"Generating audio using {exp_name}")
|
153 |
with torch.inference_mode():
|
154 |
+
generated, _ = ema_model.sample(
|
155 |
cond=audio,
|
156 |
text=final_text_list,
|
157 |
duration=duration,
|
|
|
163 |
generated = generated[:, ref_audio_len:, :]
|
164 |
generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
|
165 |
gr.Info("Running vocoder")
|
|
|
166 |
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
167 |
if rms < target_rms:
|
168 |
generated_wave = generated_wave * rms / target_rms
|
|
|
173 |
generated_wave = np.concatenate(results)
|
174 |
if remove_silence:
|
175 |
gr.Info("Removing audio silences... This may take a moment")
|
176 |
+
# non_silent_intervals = librosa.effects.split(generated_wave, top_db=30)
|
177 |
+
# non_silent_wave = np.array([])
|
178 |
+
# for interval in non_silent_intervals:
|
179 |
+
# start, end = interval
|
180 |
+
# non_silent_wave = np.concatenate([non_silent_wave, generated_wave[start:end]])
|
181 |
+
# generated_wave = non_silent_wave
|
182 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
183 |
+
sf.write(f.name, generated_wave, target_sample_rate)
|
184 |
+
aseg = AudioSegment.from_file(f.name)
|
185 |
+
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
|
186 |
+
non_silent_wave = AudioSegment.silent(duration=0)
|
187 |
+
for non_silent_seg in non_silent_segs:
|
188 |
+
non_silent_wave += non_silent_seg
|
189 |
+
aseg = non_silent_wave
|
190 |
+
aseg.export(f.name, format="wav")
|
191 |
+
generated_wave, _ = torchaudio.load(f.name)
|
192 |
+
generated_wave = generated_wave.squeeze().cpu().numpy()
|
193 |
|
194 |
# spectogram
|
195 |
# with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
|
|
|
231 |
|
232 |
generate_btn.click(infer, inputs=[ref_audio_input, ref_text_input, gen_text_input, model_choice, remove_silence], outputs=[audio_output])
|
233 |
gr.Markdown("Unofficial demo by [mrfakename](https://x.com/realmrfakename)")
|
234 |
+
|
235 |
|
236 |
app.queue().launch()
|