Upload loaders.py with huggingface_hub
Browse files- loaders.py +38 -7
loaders.py
CHANGED
@@ -203,8 +203,9 @@ class LoadCSV(Loader):
|
|
203 |
files: Dict[str, str]
|
204 |
chunksize: int = 1000
|
205 |
_cache = InternalField(default_factory=dict)
|
206 |
-
loader_limit: int = None
|
207 |
streaming: bool = True
|
|
|
208 |
|
209 |
def stream_csv(self, file):
|
210 |
if self.get_limit() is not None:
|
@@ -214,7 +215,7 @@ class LoadCSV(Loader):
|
|
214 |
chunksize = self.chunksize
|
215 |
|
216 |
row_count = 0
|
217 |
-
for chunk in pd.read_csv(file, chunksize=chunksize):
|
218 |
for _, row in chunk.iterrows():
|
219 |
if self.get_limit() is not None and row_count >= self.get_limit():
|
220 |
return
|
@@ -225,9 +226,9 @@ class LoadCSV(Loader):
|
|
225 |
if file not in self._cache:
|
226 |
if self.get_limit() is not None:
|
227 |
self.log_limited_loading()
|
228 |
-
self._cache[file] = pd.read_csv(
|
229 |
-
|
230 |
-
)
|
231 |
else:
|
232 |
self._cache[file] = pd.read_csv(file).to_dict("records")
|
233 |
|
@@ -250,11 +251,41 @@ class LoadCSV(Loader):
|
|
250 |
)
|
251 |
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
class MissingKaggleCredentialsError(ValueError):
|
254 |
pass
|
255 |
|
256 |
|
257 |
-
# TODO write how to obtain kaggle credentials
|
258 |
class LoadFromKaggle(Loader):
|
259 |
url: str
|
260 |
_requirements_list: List[str] = ["opendatasets"]
|
@@ -375,7 +406,7 @@ class LoadFromIBMCloud(Loader):
|
|
375 |
local_dir = os.path.join(
|
376 |
self.cache_dir,
|
377 |
self.bucket_name,
|
378 |
-
self.data_dir,
|
379 |
f"loader_limit_{self.get_limit()}",
|
380 |
)
|
381 |
if not os.path.exists(local_dir):
|
|
|
203 |
files: Dict[str, str]
|
204 |
chunksize: int = 1000
|
205 |
_cache = InternalField(default_factory=dict)
|
206 |
+
loader_limit: Optional[int] = None
|
207 |
streaming: bool = True
|
208 |
+
sep: str = ","
|
209 |
|
210 |
def stream_csv(self, file):
|
211 |
if self.get_limit() is not None:
|
|
|
215 |
chunksize = self.chunksize
|
216 |
|
217 |
row_count = 0
|
218 |
+
for chunk in pd.read_csv(file, chunksize=chunksize, sep=self.sep):
|
219 |
for _, row in chunk.iterrows():
|
220 |
if self.get_limit() is not None and row_count >= self.get_limit():
|
221 |
return
|
|
|
226 |
if file not in self._cache:
|
227 |
if self.get_limit() is not None:
|
228 |
self.log_limited_loading()
|
229 |
+
self._cache[file] = pd.read_csv(
|
230 |
+
file, nrows=self.get_limit(), sep=self.sep
|
231 |
+
).to_dict("records")
|
232 |
else:
|
233 |
self._cache[file] = pd.read_csv(file).to_dict("records")
|
234 |
|
|
|
251 |
)
|
252 |
|
253 |
|
254 |
+
class LoadFromSklearn(Loader):
|
255 |
+
dataset_name: str
|
256 |
+
splits: List[str] = ["train", "test"]
|
257 |
+
|
258 |
+
_requirements_list: List[str] = ["sklearn", "pandas"]
|
259 |
+
|
260 |
+
def verify(self):
|
261 |
+
super().verify()
|
262 |
+
|
263 |
+
if self.streaming:
|
264 |
+
raise NotImplementedError("LoadFromSklearn cannot load with streaming.")
|
265 |
+
|
266 |
+
def prepare(self):
|
267 |
+
super().prepare()
|
268 |
+
from sklearn import datasets as sklearn_datatasets
|
269 |
+
|
270 |
+
self.downloader = getattr(sklearn_datatasets, f"fetch_{self.dataset_name}")
|
271 |
+
|
272 |
+
def process(self):
|
273 |
+
with TemporaryDirectory() as temp_directory:
|
274 |
+
for split in self.splits:
|
275 |
+
split_data = self.downloader(subset=split)
|
276 |
+
targets = [split_data["target_names"][t] for t in split_data["target"]]
|
277 |
+
df = pd.DataFrame([split_data["data"], targets]).T
|
278 |
+
df.columns = ["data", "target"]
|
279 |
+
df.to_csv(os.path.join(temp_directory, f"{split}.csv"), index=None)
|
280 |
+
dataset = hf_load_dataset(temp_directory, streaming=False)
|
281 |
+
|
282 |
+
return MultiStream.from_iterables(dataset)
|
283 |
+
|
284 |
+
|
285 |
class MissingKaggleCredentialsError(ValueError):
|
286 |
pass
|
287 |
|
288 |
|
|
|
289 |
class LoadFromKaggle(Loader):
|
290 |
url: str
|
291 |
_requirements_list: List[str] = ["opendatasets"]
|
|
|
406 |
local_dir = os.path.join(
|
407 |
self.cache_dir,
|
408 |
self.bucket_name,
|
409 |
+
self.data_dir or "", # data_dir can be None
|
410 |
f"loader_limit_{self.get_limit()}",
|
411 |
)
|
412 |
if not os.path.exists(local_dir):
|